

The Fold Principle: A Universal Pattern from Cosmos to Cognition

Jonas Jakob Gebendorfer
OrigAmI Systems UG (limited liability)
09. October 2025 – v1.1

Abstract

We propose the Fold Principle: emergent order arises when a loaded symmetry is discontinuously broken and the resulting tension is held rather than immediately dissipated. By holding the tension we mean maintaining incompatible constraints in productive coexistence long enough for the system to discover a higher-dimensional resolution rather than collapsing into one pole. This three-stage motif—charged symmetry → break → held tension—recurs from cosmology to cognition.

We provide an operational package that distinguishes productive folds from dissipative structures: (i) a Fold Onset Triplet (spectral-gap opening, intrinsic-dimension contraction, topological stabilization); (ii) a holding functional H quantifying sustained non-equilibrium coexistence; and (iii) compression with synergy. We map this template to (i) symmetry breaking and structure formation in cosmology, (ii) synaptic plasticity and E/I balance in neurobiology, (iii) representation dynamics in AI, and (iv) evolutionary innovation. The framework yields falsifiable predictions, measurement protocols, and design principles for engineering systems that hold tension to cultivate creativity without collapse.

Keywords: Emergence, Complexity, Symmetry Breaking, Self-Organization, Artificial Intelligence, Neuroscience, Evolution, Cosmology

I. Introduction: The Question of Emergence

The universe should not look like this.

If the Second Law of Thermodynamics were the only story, we would inhabit a realm of perfect, lifeless uniformity—maximum entropy, minimum information, a cosmic fog of evenly distributed particles drifting through an expanding void. Yet when we look up, we see galaxies organized into vast filaments. When we look inward, we find neurons firing in patterns that give rise to thought. When we examine the historical record, we witness life bootstrapping itself from chemistry, consciousness emerging from neural tissue, and civilizations crystallizing from individual minds.

This is the central paradox of existence: *order arises in defiance of disorder*. Not occasionally, not accidentally, but repeatedly, lawfully, across every scale and domain we can observe. Something profound is operating beneath the surface—a mechanism that converts rupture into structure, tension into coherence, and breaks into bridges.

Classical physics offers partial answers. Symmetry breaking explains how uniformity yields differentiation (Landau & Lifshitz, 1980). Thermodynamics far from equilibrium shows how open systems can export entropy while importing order (Prigogine, 1977). Criticality describes how systems balance at the edge of phase transitions (Bak et al., 1987).

Evolutionary theory reveals how selection sculpts complexity over time (Darwin, 1859). Each framework illuminates a facet of the mystery. Yet none alone captures what appears to be a universal rhythm: a substrate becomes charged with latent potential, suffers a discontinuity, and—here is the crucial move—*does not relax*. Instead, it holds the resulting tension in productive suspension, long enough for a new organizational pattern to crystallize.

We call this rhythm **the Fold Principle**: emergent order arises when a loaded symmetry is discontinuously broken and the resulting tension is held rather than immediately dissipated. By “holding” we mean something precise and operationalizable: the metastable coexistence of incompatible constraints that neither collapse into one pole nor dissipate into noise, but instead generate a higher-dimensional resolution—a new code, structure, or capability that was inaccessible to the system before the break.

This paper argues that the Fold is not metaphor but mechanism. It is a testable, falsifiable pattern that recurs from the primordial symmetry breaking of the early universe to the synaptic discontinuities that enable learning, from the semantic folds in artificial intelligence to the evolutionary innovations driven by unresolved trade-offs. We provide operational definitions, measurement protocols, and concrete predictions. If the Fold Principle is correct, we should be able to detect its signature—what we call the Fold Onset Triplet—in the moment a system transitions from mere complication to genuine complexity.

The creativity of nature, it seems, lies not in avoiding discontinuity but in learning to hold it.

II. The Pattern: Anatomy of the Fold

To understand what makes a fold *productive*—what distinguishes creative emergence from mere disruption—we must first anatomize the process itself. The Fold Principle describes a three-phase sequence that recurs with remarkable fidelity across radically different substrates.

II.1 The Three Phases

Phase 1: Loaded Symmetry (Pre-stress)

The substrate begins in a state of high degeneracy or latent constraint. This is not emptiness but charged potential—like a perfectly balanced pencil standing on its tip, or a supercooled liquid that has not yet crystallized (Lifshitz & Pitaevskii, 1980). The system possesses symmetry, but that symmetry is *metastable*, laden with unexpressed possibilities.

In physical terms, we model this as a potential landscape S with multiple equivalent minima. The system has yet to “choose” which valley to occupy. In information-theoretic terms, this is a state of low *actual* information (all states look similar) but high *potential* information (many distinct futures are accessible) (Shannon, 1948). The key mathematical object is the gradient ∇S —the tension field that will drive subsequent dynamics once the symmetry breaks.

Examples:

- **Cosmology:** The early universe in near-perfect thermal equilibrium, with quantum fluctuations as latent asymmetries (Guth, 1981; Mukhanov, 2005).
- **Neurobiology:** An over-parameterized neural network or a naïve cortex before experience-driven pruning (Chechik et al., 1998; Huttenlocher & Dabholkar, 1997).
- **AI:** A high-capacity embedding space shaped by pretraining, before task-specific constraints are imposed (Radford et al., 2019).
- **Evolution:** A population with genetic redundancy distributed across neutral networks in fitness space (Kimura, 1983; Wagner, 2008).

Phase 2: The Break (Localized Discontinuity)

A bifurcation occurs. The degeneracy is lifted. A boundary is drawn, a distinction is made, a symmetry is broken. This need not be violent or large-scale—often it is microscopic, stochastic, or triggered by an arbitrarily small perturbation (Thom, 1972). But its consequences are fundamental: it creates *incompatible constraints* where none existed before.

This is not mere noise. The break is a topological event that partitions the state space, introducing gradients, polarities, or defects. In catastrophe theory terms, the system crosses a fold in its control manifold (Thom, 1972). In thermodynamic terms, it undergoes a phase transition (Stanley, 1987). In information-theoretic terms, the first bit of actual information is written.

Examples:

- **Cosmology:** Symmetry breaking in the early universe; the splitting of unified forces; the seeding of density perturbations (Weinberg, 1972; Kolb & Turner, 1990).
- **Neurobiology:** A local plasticity event (long-term potentiation/depression) that strengthens one synaptic pathway over alternatives (Bliss & Lømo, 1973; Bear & Malenka, 1994).
- **AI:** A prompt that introduces contradictory goals (“Be concise yet comprehensive”), or a gradient update that pushes competing loss terms into tension (Ouyang et al., 2022).
- **Evolution:** A mutation that creates a fitness trade-off, or an ecological partition that splits a niche (Lande, 1979; Schlüter, 2000).

Phase 3: Held Tension (Metastable Non-equilibrium)

Here is where the magic happens—or fails to happen. The system does *not* immediately relax to equilibrium. Instead, it enters a metastable regime where the incompatible constraints introduced by the break remain concurrently active. Dissipation is slowed by feedbacks, recurrent loops, topological constraints, or regulatory circuits. The tension persists long enough to be *harvested*—converted into new relational structure, compressed codes, or emergent capabilities.

This is the defining feature that distinguishes a fold from a mere perturbation. A stone rolling down a hill experiences a “break” when it encounters a bump, but there is no holding—it simply continues downward. A jazz improvisation, by contrast, sustains harmonic tension across multiple bars before resolving into a new key. A fold is the latter: a dynamical regime that *uses* the break rather than erasing it.

Mathematically, we quantify this via the **holding functional** H (detailed in Section VII), which integrates the product of tension magnitude, coherence, and temporal duration over the critical window.

Examples:

- **Cosmology:** Gravitational collapse balanced against thermal pressure; virialized structures (galaxies, clusters) that store potential energy in stable orbits (Binney & Tremaine, 2008).
- **Neurobiology:** Excitation/inhibition (E/I) balance that keeps neural assemblies near criticality without runaway firing or quiescence (Haider et al., 2006; Destexhe & Contreras, 2006).
- **AI:** A model maintaining multiple competing hypotheses across reasoning steps before canonical resolution (Wei et al., 2022b).
- **Evolution:** Life-history trade-offs (reproduction vs. survival) held across generations until modular innovations emerge (Stearns, 1992; Roff, 2002).

II.2 Productive vs. Destructive Discontinuities

Not all breaks lead to folds. Not all tension is productive. We must distinguish:

Productive Fold:

- Increases cross-scale coherence κ (the system becomes more internally aligned).
- Increases multi-variable synergy SI (information that exists only in joint patterns, not marginals) (Williams & Beer, 2010).
- Achieves compression with stronger relational structure (shorter description length, higher mutual information).
- Exhibits the Fold Onset Triplet (Section VII.2): spectral gap opening, intrinsic dimensionality contraction, and topological stabilization co-occur.

Destructive Break:

Either:

- *Immediate relaxation:* The tension dissipates instantly; no holding occurs; the system returns to near its prior state ($H \approx 0$).
- *Fragmentation/collapse:* The tension escalates uncontrollably; coherence $\kappa \downarrow$; the system shatters into incoherent pieces or collapses into one extreme pole.

Think of the difference this way:

- A **productive fold** is a jazz musician holding a dissonant chord long enough to resolve it into an unexpected harmonic progression.
- A **destructive break** is either a string snapping (immediate relaxation) or feedback screeching into noise (uncontrolled escalation).

The operational test is the **conjunctive package**: $FOT + H > 0 + \text{compression-with-synergy}$. All three must be present. Any single metric can mislead; the conjunction is the signature.

II.3 What Exactly Is “Holding the Tension”? (Domain-Agnostic Definition)

We now provide the central operational definition:

Definition. *Holding the tension* is the metastable coexistence of mutually incompatible constraints (C^+ , C^-) such that:

1. **Both remain operative** over a finite window $[t, t + \Delta]$ (no immediate collapse to one pole);
2. **The system converts their conflict** into a higher-dimensional resolution—a new latent variable, compressed code, or modular structure that reduces joint description length while increasing synergy; and
3. **The holding functional $H > 0$** (Section VII.3), quantifying sustained tension, coherence, and stability during the window.

Domain Concretizations:

Cosmology: Collapse vs. Expansion

- C^+ : Gravitational attraction pulling matter inward.
- C^- : Thermal pressure and dark energy driving expansion.
- *Holding*: Virialized structures (galaxies, clusters) stabilize at intermediate scales where both forces remain engaged, storing gravitational potential in orbital motion rather than collapsing to singularities or dissipating into homogeneity.

Neurobiology: Excitation vs. Inhibition

- C^+ : Excitatory drive (glutamatergic signaling) promoting firing.
- C^- : Inhibitory control (GABAergic signaling) suppressing activity.
- *Holding*: E/I balanced circuits maintain near-critical dynamics—neither silent (pure inhibition) nor seizing (pure excitation)—enabling flexible coding and learning (Vogels & Abbott, 2009).

Artificial Intelligence: Contradictory Constraints

- C^+ , C^- : Dual objectives like “be helpful” vs. “be harmless,” or “use prior knowledge” vs. “defer to context.”
- *Holding*: The model sustains competing partial plans or hypotheses across multiple reasoning steps, then synthesizes them into a canonical answer that satisfies both constraints at a higher level of abstraction. The resolution coincides with FOT on representation graphs.

Evolution: Reproduction vs. Survival

- C^+ : Maximizing offspring number.
- C^- : Maximizing individual longevity and resource allocation to maintenance.
- *Holding*: Life-history strategies maintain trade-offs across generations (r/K selection continuum) until ecological or genetic innovations enable niche partitioning or modular solutions (e.g., iteroparity, parental care) (MacArthur & Wilson, 1967; Stearns, 1992).

The pattern is invariant: two forces, neither dominant, neither extinguished, held in dynamic opposition long enough for the system to discover a third option that was inaccessible from either pole alone.

II.4 Why Is Holding Essential?

Why can't the system simply resolve the tension immediately? Why is the temporal window critical?

Because **higher-dimensional resolutions require exploration time**.

Imagine a two-dimensional creature living on a flat plane, encountering two walls that form a corner (incompatible constraints: “go forward” vs. “go forward”). If it immediately bounces off or stops, it never discovers the third dimension—*up*. Only by “holding” the frustration long enough to explore the local geometry does it find the escape route.

Similarly:

- A neural network that immediately picks the highest-probability token never explores compositional solutions that require multi-step reasoning.
- A proto-galaxy that immediately thermalizes its kinetic energy never forms stars.
- An organism that immediately resolves a trade-off by abandoning one fitness component never evolves the regulatory networks that enable both.

Holding is the temporal budget required for the system to search its latent geometry, recruit new degrees of freedom, and construct a bridge where none existed.

Without holding, there is only dissipation or destruction. With holding, there is the possibility of transcendence.

III. Physical Cosmology: The Primordial Fold

The universe itself is the first and grandest fold—a cascade of symmetry breaking and held tensions that transformed a featureless quantum foam into the hierarchical cosmic web we observe today. Cosmology offers the clearest example of the fold principle operating at its most fundamental level, where the phases are not metaphorical but precisely measurable through observational data.

III.1 Loaded Symmetry: The Inflationary Substrate

In the first fraction of a second after the Big Bang, the universe existed in a state of extraordinary—but unstable—symmetry. The four fundamental forces we observe today (gravity, electromagnetism, strong and weak nuclear forces) were unified into a single interaction (Weinberg, 1972). Space itself was nearly perfectly homogeneous and isotropic. This was not equilibrium in the thermodynamic sense, but a false vacuum: a high-energy state of apparent calm that was, in fact, pregnant with latent structure.

During the inflationary epoch ($\sim 10^{-36}$ to 10^{-32} seconds after the Big Bang), the universe underwent exponential expansion driven by a scalar field (the inflaton) (Guth, 1981; Linde, 1982). This rapid stretching had a crucial consequence: quantum fluctuations—*intrinsic* uncertainties in the energy density at the Planck scale—were amplified from subatomic to cosmic scales (Mukhanov & Chibisov, 1981). These fluctuations were the “charged potential” of the cosmological substrate.

In fold language:

- The potential S is the inflaton field energy landscape.
- The gradient ∇S arises from quantum fluctuations in this field—microscopic variations in energy density.
- The degeneracy is the near-perfect spatial homogeneity before these perturbations are seeded.

The cosmic microwave background (CMB) radiation—the oldest light in the universe—reveals these primordial fluctuations as tiny temperature anisotropies: deviations from perfect uniformity of only ~ 1 part in 100,000 (Smoot et al., 1992; Bennett et al., 2003). Yet these minuscule asymmetries encode the initial conditions for *all* subsequent structure formation.

Measurement signature: The CMB power spectrum shows a characteristic pattern of peaks that directly reflect the statistical properties of these quantum-seeded perturbations (Planck Collaboration, 2020). The near scale-invariance of this spectrum (spectral index $ns \approx 0.96$) indicates that the “loading” was approximately uniform across scales—a substrate ready to fold at multiple hierarchical levels simultaneously.

III.2 The Break: Symmetry Breaking Cascade

As the universe expanded and cooled, it underwent a series of phase transitions—each one a discontinuous breaking of symmetry that introduced new forces and particle species.

The electroweak transition ($\sim 10^{-12}$ seconds, $T \sim 100$ GeV):

The unified electroweak force split into electromagnetism and the weak nuclear force (Weinberg, 1967; Salam, 1968). The Higgs field underwent spontaneous symmetry breaking, acquiring a non-zero vacuum expectation value (Higgs, 1964). This event gave mass to the W and Z bosons (and indirectly to fermions), fundamentally changing the rules of particle interactions.

The QCD transition ($\sim 10^{-5}$ seconds, $T \sim 150$ MeV):

Quarks and gluons, previously existing in a deconfined quark-gluon plasma, became confined within hadrons (protons, neutrons, mesons). This phase transition created the matter content of the observable universe (Gross & Wilczek, 1973; Politzer, 1973).

Recombination ($\sim 380,000$ years, $T \sim 3000$ K):

Electrons combined with protons to form neutral hydrogen. This “last scattering surface” is what we observe as the CMB. Crucially, photons decoupled from matter at this moment, ending the tight coupling that had previously suppressed gravitational collapse (Peebles, 1968).

Each of these transitions is a **break** in the fold sense:

- It introduces *incompatible constraints*: new forces with different coupling strengths create competition (e.g., electromagnetic repulsion vs. gravitational attraction).
- It creates *topological defects* and *localized asymmetries*: regions of space fall into different vacuum states; density perturbations become “frozen in.”
- It establishes *gradients* that will drive subsequent evolution.

Critical observation: Not all symmetry breaking leads to observable structure. The Peccei-Quinn symmetry (if it exists) may have broken at very high energies, potentially creating axions, but this leaves no macroscopic structural trace (Peccei & Quinn, 1977). The fold principle predicts structure only when the break creates gradients that can be *held* against dissipation long enough to amplify.

III.3 Held Tension: Gravitational Collapse and Virialization

Here is where cosmology most clearly exemplifies the holding phase. After recombination, the universe consisted of a nearly—but not quite—uniform gas of hydrogen and helium, laced with dark matter. The density perturbations seeded by inflation now began to grow gravitationally (Peebles, 1980).

The incompatible constraints:

- **C⁺ (Gravitational collapse):** Overdense regions attract more matter, creating a runaway instability—gravitational potential energy converts to kinetic energy as matter falls inward.
- **C⁻ (Pressure and expansion):** Thermal pressure resists compression; the Hubble expansion dilutes densities and carries matter apart.

In a purely dissipative scenario (analogous to Prigogine’s structures), we would expect:

- Overdensities would either fully collapse into black holes, or
- Pressure would fully thermalize the kinetic energy, erasing the perturbation.

Neither happens. Instead, the universe creates **virialized structures**—galaxies, clusters, and the cosmic web—where gravitational and kinetic energy reach a dynamic balance (Zel’dovich, 1970; White & Rees, 1978). This is the *holding* of cosmological tension.

The virialization process:

1. **Initial infall:** Matter begins collapsing into a potential well. Velocities increase as gravitational potential energy converts to kinetic energy.
2. **Violent relaxation:** Particles overshoot the center, creating a time-varying gravitational field. This process redistributes energy among particles, driving the system toward an equilibrium distribution (virial equilibrium) (Lynden-Bell, 1967).
3. **Quasi-stable configuration:** The system settles into a state where $\langle T \rangle = -\frac{1}{2}\langle U \rangle$ (virial theorem), where T is kinetic energy and U is potential energy. The structure is stable against further collapse or dispersal—*the tension is held*.

Crucially: This is not thermodynamic equilibrium. Virialized structures maintain gravitational potential energy as a stored resource. Dark matter halos, for instance, have complex phase-space distributions that retain memory of their formation history—they are not

ergodic, fully mixed systems (Navarro et al., 1997). The tension ($\nabla S \sim$ gravitational potential gradients) remains encoded in the orbital structure.

Observational evidence:

- **Galaxy rotation curves:** Flat rotation curves indicate stable, virialized dark matter halos extending far beyond the visible disk—a clear signature of held gravitational tension (Rubin & Ford, 1970).
- **Cluster dynamics:** Galaxy clusters show velocity dispersions that exactly satisfy the virial theorem, confirming that kinetic and potential energy are held in balance (Zwicky, 1937).
- **Cosmic web topology:** The universe exhibits a filamentary structure (sheets, filaments, nodes) rather than random clumps or uniform fog. This topology is a direct consequence of held tension across multiple scales—local collapse along one or two axes while expansion continues along the others (Bond et al., 1996).

III.4 The Fold Onset Triplet in Cosmological Structure Formation

We now apply the FOT framework (Section VII.2) to cosmic structure formation, treating the matter distribution as a graph where nodes are mass elements and edges represent gravitational or filamentary connections.

Prediction C-1 (FOT during structure formation):

During the epoch of peak structure formation ($z \sim 2-3$, corresponding to 10-11 billion years ago), we should observe the Fold Onset Triplet in the evolving dark matter distribution:

1. Spectral gap opening ($\Delta\lambda_2 \uparrow$):

- At early times ($z > 10$), the density field is nearly uniform—the graph of mass elements is nearly complete (all-to-all connections), with a small spectral gap.
- As structures begin to collapse and the cosmic web forms, the graph becomes more clustered—distinct halos and filaments emerge, increasing λ_2 (the algebraic connectivity).
- **Testable:** Measure λ_2 of the k -nearest-neighbor graph of dark matter particles in N -body simulations across cosmic time. Peak $\Delta\lambda_2/\Delta t$ should coincide with $z \sim 2-3$.

1. Intrinsic dimensionality contraction (ID \downarrow):

- Initially, matter fills 3D space nearly uniformly ($ID \approx 3$).
- As structures collapse into filaments, sheets, and nodes, the effective dimensionality contracts locally (filaments have $ID \approx 1$, sheets $ID \approx 2$).
- **Testable:** Use local PCA or correlation dimension measures on simulated or observational mass distributions (Shandarin et al., 2012). ID should drop from ~ 3 to $\sim 1.5-2.0$ during peak structure formation.

1. Topological stabilization (zigzag persistence \uparrow):

- Persistent homology tracks topological features (connected components, loops, voids) that survive across multiple density thresholds (Edelsbrunner & Harer, 2008).

- Virialized structures create persistent features—halos and voids that remain stable even as the threshold varies.
- **Testable:** Compute persistent homology barcodes from density fields (Sousbie, 2011; Pranav et al., 2019). Longer barcodes (higher persistence) indicate stable folded structures. Should peak during $z \sim 2-3$.

Prediction C-2 (Absence of FOT in smooth dark energy domination):

In the far future, as dark energy dominance accelerates expansion ($z \rightarrow -1$), structure formation ceases. The universe enters an era of increasing uniformity. We predict:

- No new FOT events: Existing structures redshift away; no new virialization occurs.
- Existing folds “decay”: Mergers homogenize clusters; tidal forces disrupt smaller structures.
- Coherence $\kappa \downarrow$, holding functional $H \rightarrow 0$ asymptotically.

Testable: Extrapolate N-body simulations to $z < -0.5$ ($t > 20$ billion years from now). Confirm absence of new spectral gap increases and decreasing persistence scores.

III.5 Why Cosmology as Fold (Not Merely Dissipative Structure)

One might object: isn’t this just Prigogine’s dissipative structures operating at cosmic scales? The answer is no, for a precise reason detailed in Section VII.5, but summarized here:

Dissipative structure (Prigogine, 1977, 1984):

- Maintains order through continuous energy flux.
- Structure vanishes if flux stops.
- No memory: the pattern tracks the current flow, not past history.
- Example: Bénard convection cells in a heated fluid—turn off the heat, cells disappear instantly.

Fold structure (Cosmological):

- Stores potential energy in stable configurations (virial equilibrium).
- Structure persists even after formation epoch ends; it *conserves* its own tension.
- Memory: orbital distributions, halo concentration profiles, and substructure encode formation history (assembly bias, NFW profiles) (Wechsler et al., 2002).
- Example: A galaxy halo remains virialized for billions of years, long after the initial collapse ended, because it holds gravitational potential energy in orbital motion.

The critical test:

Simulate a universe where we artificially “turn off” the mechanisms that enable virialization (e.g., remove angular momentum transfer, prevent orbit formation):

- Dissipative prediction: Structures should still form wherever energy flows.
- Fold prediction: Without the ability to hold tension (stabilize orbits), overdensities either collapse to singularities or disperse—no stable intermediate structures.

N-body simulations confirm the fold prediction: purely radial collapse (no angular momentum) produces cusps and singularities, not galaxies (Barnes & White, 1984). The capacity to hold tension via orbital dynamics is essential for structure.

III.6 Summary and Implications

The cosmos instantiates the fold principle at maximal scale:

- **Loaded symmetry:** Quantum fluctuations during inflation seed a nearly uniform substrate with latent structure.
- **Break:** Symmetry breaking (GUT → electroweak → QCD → recombination) introduces forces and density perturbations.
- **Held tension:** Gravitational collapse vs. expansion/pressure creates virialized structures—galaxies, clusters, the cosmic web—that store potential energy in stable orbits rather than dissipating.

The FOT predicts specific observable signatures during peak structure formation and specific *absences* in future epochs. This makes the fold principle falsifiable in cosmology.

Most profoundly, cosmology demonstrates that folds operate even in the absence of life, cognition, or intentionality. The universe does not “try” to create galaxies; it simply follows microphysical laws. Yet those laws, when they include mechanisms for holding tension (gravity + angular momentum + expansion), inevitably produce folded structures. The fold is not teleological—it is dynamical geometry.

IV. Neurobiology: The Synaptic Fold

If cosmology demonstrates the fold principle at the largest scales, neurobiology reveals it at the most intimate—in the microscopic gaps between neurons where thought itself emerges. The nervous system is not merely an example of folding; it is an *architecture built from folds*. Every signal, every memory, every moment of learning arises from the productive holding of tension across discontinuities that are both physical (the synaptic cleft) and dynamical (the excitation/inhibition balance).

IV.1 Loaded Symmetry: The Over-Parameterized Neural Substrate

A newborn mammalian cortex is not a blank slate—it is an extravagantly over-specified network. At birth, humans possess approximately 100 billion neurons, each forming thousands of synaptic connections, yielding roughly 100 trillion synapses. This represents a state of extraordinary degeneracy: many different patterns of connectivity could encode the same behavioral output or sensory response.

This over-parameterization is the neural equivalent of loaded symmetry:

High degeneracy:

- Neurons are multiply connected; most cortical neurons receive 5,000-10,000 synaptic inputs.
- Synaptic weights are initially broadly distributed, not yet specialized.
- Redundant pathways exist for nearly every signal route.

Latent constraints:

- Genetic programs (axon guidance molecules, cell adhesion proteins) establish coarse topographic maps and layer structure (Tessier-Lavigne & Goodman, 1996).
- Spontaneous activity patterns (retinal waves, hippocampal sharp waves) pre-structure certain correlations before experience (Katz & Shatz, 1996).
- Homeostatic mechanisms (synaptic scaling, intrinsic excitability regulation) create implicit “priors” on acceptable activity levels (Turrigiano & Nelson, 2004).

Mathematical formulation:

The potential landscape S can be modeled as the free energy of the synaptic weight configuration under developmental constraints. The gradient ∇S represents the “pressure” toward configurations that minimize metabolic cost while maintaining signal propagation. But crucially, many configurations sit at nearly equivalent local minima—the system has not yet “chosen.”

This is not the random connectivity of an unstructured network. It is a *charged* substrate: rich in potential information, poised for experience-driven differentiation, but not yet committed. The question is: what breaks this symmetry, and what determines which of the vast number of possible adult connectomes will actually be realized?

IV.2 The Break: The Synapse as Fundamental Discontinuity

The synapse is not merely a connection between neurons—it is a *gap*, a rupture, a microscopic abyss that every signal must cross. This physical discontinuity is the break that makes neural computation possible.

The synaptic cleft:

- A 20-40 nanometer gap between the presynaptic terminal and postsynaptic membrane.
- An electrical signal (action potential) cannot cross this gap directly.
- Instead, the signal must undergo a transformation: electrical → chemical (neurotransmitter release) → electrical (receptor activation and postsynaptic potential).

Why the discontinuity is essential:

If neurons were electrically continuous (as in gap junctions, which do exist but are rare in mammalian cortex), signals would propagate without transformation. The system would be

essentially a resistor network—linear, fast, but incapable of the non-linear computations, gain control, and plasticity that characterize cognition.

The synaptic cleft introduces:

1. **Non-linearity:** Neurotransmitter-receptor binding is a saturable, threshold-dependent process. A small change in presynaptic firing can produce a large change in postsynaptic response (cooperativity).
2. **Modulation:** The strength of transmission (synaptic weight) can be modified by local biochemical signals, neuromodulators, and activity history. This is the substrate for learning.
3. **Temporal dynamics:** Transmission has a delay (~0.5-2 ms) and exhibits short-term facilitation or depression depending on recent history. This creates temporal filters essential for sequence processing.
4. **Metabolic gating:** Synaptic transmission is energetically expensive (~ 10^8 ATP molecules per action potential at a single synapse) (Attwell & Laughlin, 2001). This cost creates a natural “sparse coding” pressure—only meaningful signals justify the expense of crossing the gap.

In fold language:

The synapse is the *break* that partitions the system into discrete computational units (neurons) while simultaneously creating the possibility of controlled communication between them. It introduces incompatible constraints: “maintain distinct neural identities” (C^+) vs. “enable coordinated activity” (C^-). The synapse holds this tension in its very structure.

Critical observation:

Evolution had other options. Syncytial neural networks (electrically continuous) exist in some invertebrates. The fact that complex cognition universally relies on synaptic transmission suggests that the computational power of the fold (the productive discontinuity) outweighs the speed advantage of continuity.

IV.3 Held Tension: Excitation/Inhibition Balance

If the synapse is the fundamental break, the E/I balance is the fundamental mechanism of *holding*. Cortical networks operate in a regime where excitatory drive (primarily glutamatergic) and inhibitory control (primarily GABAergic) are finely balanced, maintaining the system in a state of poised instability.

The incompatible constraints:

C^+ (Excitation):

- Glutamate release depolarizes postsynaptic neurons, making them more likely to fire.
- Positive feedback: Active neurons recruit more excitatory input through recurrent connections.
- Unchecked, this leads to runaway activity—epileptic seizures.

C⁻ (Inhibition):

- GABA release hyperpolarizes neurons or shunts excitatory currents, suppressing firing.
- Negative feedback: Inhibitory interneurons (particularly parvalbumin⁺ basket cells) provide strong, fast feedback inhibition.
- Unchecked, this leads to quiescence—coma or unresponsive states.

The held state (E/I balance):

Healthy cortical networks maintain a ratio where excitation and inhibition *co-scale* (Okun & Lampl, 2008). As excitatory drive increases, inhibition increases proportionally. This creates a high-conductance state where:

- The network is highly sensitive to small perturbations (near criticality).
- Activity can propagate but does not explode (controlled amplification).
- Information capacity is maximized—the network can represent many distinct states.

Quantitative signatures:

1. **Temporal balance:** In sensory cortex, inhibitory currents arrive 1-5 ms after excitatory currents (feedforward inhibition), creating a brief temporal window for integration (Wehr & Zador, 2003).
2. **Proportional scaling:** Across many brain regions, the ratio of excitatory to inhibitory synapses remains approximately 4:1, and the ratio of excitatory to inhibitory conductances remains near 1:1 (because inhibitory synapses are stronger).
3. **Homeostatic regulation:** If inhibition is experimentally reduced (e.g., by blocking GABA receptors), excitatory synapses undergo compensatory weakening within hours—the system actively defends the balance (Turrigiano et al., 1998).

This is holding in the fold sense:

The system does *not* resolve the tension by eliminating either excitation or inhibition. Both remain operative. The tension is not dissipated but *harnessed*—the gap between excitatory drive and inhibitory threshold becomes the computational “workspace” where neuronal ensembles can form, compete, and stabilize.

The holding functional H in neural terms:

- T (tension) \propto variance of membrane potential fluctuations (reflecting E/I competition).
- κ (coherence) \propto pairwise spike correlations within assemblies.
- The integral captures sustained high-variance, high-coherence periods—the signature of productive tension.

Pathological extremes (when holding fails):

- **Excessive excitation (collapse to C⁺):** Epilepsy. The FOT signatures would show: $\lambda_2 \rightarrow 0$ (all neurons synchronize into a single cluster), $ID \rightarrow 0$ (population activity collapses to a 1D trajectory), loss of persistent features (no stable assemblies, only global oscillations).

- **Excessive inhibition (collapse to C^-):** Anesthetic-induced unconsciousness or certain coma states. FOT signatures: network fragmentation (many disconnected clusters), $\kappa \rightarrow 0$ (no coherence), $H \rightarrow 0$ (no sustained tension).

IV.4 Learning as Fold: From Diffuse Potential to Crystallized Assemblies

Learning—the process by which experience shapes neural circuitry—is a fold process par excellence. It is the conversion of a charged, degenerate substrate (the naïve brain) through repeated breaks (plasticity events) into stable, information-bearing structures (cell assemblies, cognitive maps, motor programs).

Phase 1: Loaded symmetry

A naïve cortex contains many near-equivalent synaptic configurations that could encode a particular stimulus or behavior. Before learning, the representation is diffuse—many neurons respond weakly and non-specifically.

Phase 2: The break (LTP/LTD)

Synaptic plasticity introduces discontinuities. The canonical mechanisms:

- **Long-term potentiation (LTP):** Repeated co-activation of pre- and postsynaptic neurons (Hebbian coincidence) triggers biochemical cascades (NMDA receptor activation, CaMKII phosphorylation, AMPA receptor insertion) that durably strengthen the synapse (Bliss & Collingridge, 1993). This is a *localized break*—one pathway is enhanced over its competitors.
- **Long-term depression (LTD):** Other patterns of activity (anti-correlated firing, low-frequency stimulation) weaken synapses. This is the complementary break—alternative pathways are suppressed.
- **Spike-timing-dependent plasticity (STDP):** The precise timing of pre- and postsynaptic spikes determines the sign and magnitude of plasticity (Bi & Poo, 1998). This creates temporal *partitions*—pathways encoding specific sequences are differentially modified.

Crucially: These plasticity events are *activity-dependent discontinuities*. They break the initial symmetry of synaptic weights, creating gradients in connectivity strength.

Phase 3: Held tension (assembly stabilization)

A single LTP event is not enough. Memories and learned representations require the *stabilization* of new synaptic configurations against homeostatic pressures that tend to restore baseline weights.

The holding mechanisms:

1. **Recurrent amplification:** Once a subset of neurons is strengthened, they begin to co-activate more reliably, creating positive feedback that reinforces the new pattern.

2. **Inhibitory sculpting:** As an excitatory assembly forms, feedforward and feedback inhibition sharpen its boundaries, suppressing competing assemblies. The E/I balance shifts locally to stabilize the new state.
3. **Synaptic tagging and capture:** Early-phase LTP creates a “tag” at modified synapses. If the animal experiences a behaviorally significant event within a critical window (~1 hour), protein synthesis is triggered and the tag “captures” new proteins, converting early LTP into late LTP (lasting days to lifetime) (Frey & Morris, 1997).
4. **Systems consolidation:** Over days to weeks, hippocampal assemblies “train” cortical assemblies through repeated reactivation (replay during sleep), gradually transferring the held tension from a temporary to a permanent substrate (McClelland et al., 1995).

The higher-dimensional resolution:

The new assembly is not merely a stronger version of the diffuse pattern—it is a *compressed code*. Fewer neurons respond, but they respond more reliably and specifically. The representation gains:

- Lower description length (sparser code).
- Higher mutual information between neurons within the assembly.
- Increased synergy (assembly activity conveys information not present in individual neurons).

This is fold emergence: a break (LTP/LTD) creates tension (competing assemblies), the system holds the tension (via recurrence and consolidation), and a new structure crystallizes (the stable assembly).

Example: Place cell formation in hippocampus

- **Loaded:** A rat enters a novel environment. Hippocampal CA3 neurons fire diffusely, many responding weakly to many locations.
- **Break:** As the rat explores, specific CA3 neurons co-activate with specific spatial locations (driven by entorhinal grid cells and sensory cues). STDP strengthens these coincident pathways.
- **Hold:** Recurrent CA3-CA3 connections amplify the emerging place fields. Inhibitory interneurons sharpen the fields (neurons outside the preferred location are suppressed). During sleep, the spatial sequence replays at high speed, consolidating the map (Wilson & McNaughton, 1994).
- **Resolution:** After hours to days, sharp place fields emerge—each neuron fires only in a small region of space. The hippocampal ensemble now encodes a stable cognitive map. Description length decreased (fewer neurons per location), synergy increased (ensemble firing predicts location better than any single neuron).

IV.5 The Fold Onset Triplet in Neural Systems

We now provide concrete, experimentally testable predictions using the FOT framework.

Experimental setup:

Record from populations of neurons (100-1000 cells) using multi-electrode arrays or two-photon calcium imaging during a learning task (e.g., fear conditioning, spatial navigation, perceptual discrimination). Build graphs where nodes are neurons and edges represent functional connectivity (correlation, directed information, or physical synaptic connections if anatomy is available).

Prediction N-1 (FOT during learning):

At the moment of successful learning (behavioral threshold crossed), the neural population should exhibit the FOT:

1. Spectral gap opening ($\Delta\lambda_2 \uparrow$):

- Before learning: The functional connectivity graph is relatively homogeneous—weak, broad correlations.
- During learning: Assemblies form—groups of neurons become tightly correlated while correlations between groups weaken.
- This increases λ_2 (algebraic connectivity), the second-smallest eigenvalue of the graph Laplacian.
- **Test:** Compute λ_2 of the pairwise spike correlation graph in sliding 1-minute windows. Peak $\Delta\lambda_2$ should coincide with the trial where the animal first demonstrates learned behavior.

1. Intrinsic dimensionality contraction (ID \downarrow):

- Before learning: Population activity explores a high-dimensional space (many uncorrelated patterns).
- After learning: Activity contracts onto lower-dimensional manifolds (specific assemblies activate in specific contexts).
- **Test:** Use PCA or local dimensionality estimators (correlation dimension, MLE) on population spike trains. ID should drop by 20-50% coincident with learning.

1. Topological stabilization (persistence \uparrow):

- Before learning: Functional assemblies are transient—they appear and dissolve rapidly.
- After learning: Stable assemblies persist across multiple trials/epochs.
- **Test:** Use persistent homology on the time-evolving functional connectivity graph. Compute barcode lengths (persistence of connected components). Longer barcodes post-learning indicate stable folded structures.

Prediction N-2 (E/I balance and holding functional H):

During successful learning, H should be maximal:

- T (tension) \propto membrane potential variance (reflecting E/I competition).
- κ (coherence) \propto within-assembly spike correlations.
- Duration: The critical learning window (e.g., the 100-500 ms after CS-US pairing in fear conditioning).

Test: Record intracellularly or use voltage-sensitive dyes. Compute:

$$H = \int \mathbb{1}\{\text{Var}[V(t)] \geq \text{threshold}\} \cdot \mathbb{1}\{|\text{d Var}/\text{d}t| \leq \eta\} \cdot \rho(t) \, dt$$

where $\rho(t)$ is within-assembly correlation strength.

Prediction: H peaks during learning trials and is near zero during passive baseline or post-consolidation retrieval (where assemblies activate cleanly without competition).

Prediction N-3 (Absence of FOT in rote strengthening):

Not all plasticity is fold-driven. Simple potentiation without assembly formation (e.g., uniform strengthening of all synapses by pharmacological LTP induction) should *not* show FOT:

- λ_2 should not increase (no clustering).
- ID should not decrease (no manifold contraction).
- No increase in persistence.

Test: Induce LTP via high-frequency stimulation of a large afferent pathway without behaviorally relevant context. Measure FOT. The fold principle predicts no triplet—plasticity without held tension is not a fold.

IV.6 Differentiation: Why This Is Not Merely Hebbian Plasticity

One might object: isn't this just Hebb's rule ("neurons that fire together wire together") with fancy metrics? No—and the distinction is crucial.

Hebbian plasticity (classical):

- A local rule: Synaptic strength increases with correlated pre- and postsynaptic activity (Hebb, 1949).
- No concept of tension or holding—plasticity is an immediate consequence of correlation.
- No constraint on stability—Hebbian learning can lead to runaway potentiation without homeostasis.
- Produces strengthened connections, but not necessarily compressed codes or stable assemblies.

Fold principle (neurobiological instantiation):

- A systems-level process: Assembly formation requires not just local correlations but *held tension* between excitatory drive and inhibitory control.
- The triplet (FOT + H + compression-with-synergy) must co-occur.
- Predicts specific temporal dynamics: learning requires a metastable window where competing assemblies coexist before one stabilizes.
- Distinguishes productive plasticity (that increases coherence and reduces description length) from destructive plasticity (runaway potentiation, fragmentation).

Critical test:

Block homeostatic mechanisms (synaptic scaling, intrinsic excitability regulation) in a neural network model or in vitro culture:

- Hebbian prediction: Learning should still occur, possibly faster (less opposition to potentiation).
- Fold prediction: Productive learning should fail. Without the ability to hold tension (E/I balance), plasticity leads to either runaway excitation or network fragmentation. FOT will not appear; $H \approx 0$.

Experimental evidence supports the fold view: cultures with blocked homeostasis exhibit epileptiform activity and fail to form stable assemblies despite ongoing Hebbian plasticity (Turrigiano & Nelson, 2004).

IV.7 Pathological Cases: When Holding Fails

The fold principle gains explanatory power from its failures—pathologies where the holding mechanism breaks down.

Epilepsy (failure to hold E/I balance):

- Genetic or acquired reduction in inhibition (e.g., loss of GABAergic interneurons, GABA receptor mutations).
- E/I balance collapses toward pure excitation.
- FOT signature: $\lambda_2 \rightarrow 0$ (global synchrony), $ID \rightarrow 1$ (all neurons oscillate together), loss of persistent features.
- This is a destructive break: coherence (κ) may transiently spike during seizure, but compression fails—the system conveys no information, only noise.

Autism spectrum (aberrant E/I balance):

- Theoretical models propose elevated E/I ratio in certain cortical circuits (Rubenstein & Merzenich, 2003).
- Predictions: Reduced H during social learning tasks (insufficient inhibitory control to stabilize competing assembly candidates), higher baseline ID (less manifold contraction), reduced persistent features (assemblies form but don't stabilize).
- Empirical tests ongoing—some evidence for reduced GABAergic markers and altered critical dynamics in ASD.

Alzheimer's disease (loss of synaptic holding):

- Amyloid- β and tau pathology destabilize synapses, reducing the ability to maintain LTP (Selkoe, 2002).
- Assemblies form transiently but dissolve (loss of consolidation).
- Prediction: Normal or even enhanced early FOT signals (initial learning intact), but rapid decay of persistence scores over hours (failure of systems consolidation). H integral reduced due to inability to sustain tension.

Schizophrenia (dysregulated holding):

- Dopaminergic dysregulation may lead to inappropriate stabilization (false assemblies) or failure to stabilize (cognitive fragmentation).
- Prediction: Aberrant FOT—spurious λ_2 increases during rest (hallucinations as false folds), or failure of FOT during goal-directed tasks (negative symptoms as inability to form task assemblies).

These clinical predictions are falsifiable and could guide both diagnostic markers and therapeutic targets (e.g., drugs that restore E/I balance should increase H and FOT during learning).

IV.8 Summary: The Synapse as Universal Fold Architecture

Neurobiology reveals the fold principle at its most tangible:

- **Loaded symmetry:** Over-parameterized, degenerate connectivity.
- **Break:** The synapse itself is a physical discontinuity; plasticity events (LTP/LTD) introduce local asymmetries.
- **Held tension:** E/I balance creates a metastable regime where competing assemblies can coexist long enough for one to crystallize.

The FOT provides measurable signatures: spectral gaps open, dimensionality contracts, topological features stabilize—precisely when learning occurs. The holding functional H quantifies the sustained, productive tension that distinguishes true learning from mere synaptic noise.

Most compellingly, pathological cases—where holding fails—produce precisely the FOT violations the theory predicts. Epilepsy, Alzheimer's, and autism are not merely “broken brains” but specific failures of the fold mechanism: either tension cannot be held (epilepsy), or it cannot be consolidated (Alzheimer's), or it is held aberrantly (autism, schizophrenia).

The brain is not a computer. It is a fold-machine—an evolved architecture for converting experiential breaks into stable, compressed knowledge by holding the tension between excitation and inhibition, between old priors and new evidence, between competing hypotheses and canonical resolutions. Every thought you have is a fold—a held discontinuity that refuses to collapse, and in that refusal, discovers meaning.

V. Artificial Intelligence: The Semantic Fold

If neurobiology demonstrates folding in wet, biological substrates, artificial intelligence reveals it in pure information processing. Modern large language models (LLMs) and other deep learning systems provide an unprecedented laboratory for studying the fold principle—one where we can observe, measure, and even engineer folds with precision impossible in

natural systems. Here, the substrate is not synapses but embeddings, the breaks are not plasticity events but prompts and gradients, and the tension is held not by E/I balance but by architectural constraints and optimization dynamics. Yet the pattern remains recognizably the same.

V.1 Loaded Symmetry: The High-Dimensional Semantic Substrate

A large language model begins not as a blank slate but as an extraordinarily rich, pre-structured space of potentiality. Through pretraining on vast corpora (hundreds of billions to trillions of tokens), the model constructs a high-dimensional embedding space—typically 1,024 to 12,288 dimensions—where every possible token, phrase, and concept is represented as a vector.

The geometry of loaded potential:

This embedding space is the AI equivalent of cosmology’s quantum foam or neurobiology’s over-parameterized cortex. It exhibits:

1. **Semantic continuity:** Similar concepts cluster nearby. The vectors for “king” and “queen” lie in a similar region; “atom” and “molecule” are neighbors; “love” and “affection” are close.
2. **Compositional structure:** Relationships are encoded as geometric transformations. The vector difference (king - man + woman) \approx queen. This is not programmed—it emerges from statistical learning.
3. **High degeneracy:** Many different token sequences can express the same meaning; many different paths through the space can reach similar outputs. The model has not yet committed to a specific interpretation or response.
4. **Latent priors:** Pretraining embeds implicit “knowledge”—distributional patterns that capture everything from grammatical rules to factual associations to reasoning heuristics. These are not explicit rules but statistical tendencies encoded in the geometry.

Mathematical formulation:

The embedding space can be modeled as a potential landscape $S(x)$ where x is a position in the high-dimensional space. The gradient ∇S represents “semantic forces”—directions of increasing probability or coherence under the model’s learned distribution. But crucially, this landscape contains many valleys (multiple valid interpretations, multiple plausible continuations). The model has not yet “chosen” which valley to descend into.

This is loaded symmetry:

- High potential information (the space can represent vast semantic distinctions).
- Low actual information (before a specific prompt or task, the model is maximally uncertain—it could generate any of billions of possible next tokens with non-zero probability).
- Latent constraints (the pretrained geometry already encodes statistical regularities).

The key insight: this space is not neutral or empty. It is *charged*—pre-structured by training, but not yet actualized into specific meaning. Like the early universe’s quantum fluctuations or the infant cortex’s over-connected synapses, it awaits the break that will collapse this potential into actual.

V.2 The Break: Prompts and Constraints as Semantic Discontinuities

If the embedding space is loaded potential, the prompt is the break—the discontinuity that introduces incompatible constraints and forces the model to commit.

Types of breaks:

1. Simple disambiguation:

- Prompt: “The bank...”
- Break: Forces choice between “financial institution” vs. “river edge” interpretations.
- The model’s hidden states must now partition the semantic space—routes leading to financial contexts vs. geographical contexts diverge.

1. Contradictory imperatives:

- Prompt: “Explain quantum mechanics, but make it concise yet comprehensive.”
- Break: Creates tension between minimizing length (concise) and maximizing information coverage (comprehensive).
- These constraints are mutually exclusive in the naive sense—you cannot simultaneously be exhaustive and brief.

1. Multi-objective constraints:

- System prompt: “Be helpful, harmless, and honest.”
- User query: “How do I pick a lock?”
- Break: “Helpful” suggests providing instructions; “harmless” suggests refusing (lock-picking knowledge could enable crime); “honest” requires acknowledging the tension rather than deflecting.

1. Contextual shifts (In-Context Learning):

- Few-shot examples that conflict with pretraining priors.
- Example: After seeing “up → down, left → right, hot → cold”, the prompt “heavy →” breaks the semantic prior (which would predict “lifting”, “weight”) and forces a new rule (“antonym”).

1. Gradient-induced breaks (fine-tuning, RLHF):

- During training, conflicting loss terms (e.g., language modeling loss vs. reward model score) create optimization tension.

- The model must find a compromise—a higher-dimensional solution that partially satisfies both.

The geometric signature of a break:

When a prompt introduces constraints, we can observe (in principle, via model internals):

- **Dimensionality reduction:** The activations in middle layers contract from the full embedding space onto lower-dimensional manifolds corresponding to the constrained interpretation.
- **Gradient formation:** The probability distribution over next tokens sharpens—some regions become much more likely, others are suppressed.
- **Representational divergence:** Hidden states corresponding to different constraint interpretations diverge in the representation space.

This is the fold breaking the symmetry: where before the model could have gone anywhere in semantic space, now specific regions are prescribed, others forbidden. The question is: does the model immediately collapse into one region, or does it *hold* the tension between competing constraints?

V.3 Held Tension: Metastable Coexistence in Semantic Space

The critical insight: sophisticated AI systems do not always immediately resolve contradictions. Instead, they maintain multiple competing hypotheses, partial plans, or incompatible constraints *concurrently* across multiple processing steps (layers in a feedforward pass, or tokens in a chain-of-thought sequence), before arriving at a canonical resolution.

Mechanisms of holding in AI:

1. Layered processing:

- Early layers maintain broad, ambiguous representations.
- Middle layers exhibit the highest tension—competing interpretations are simultaneously active.
- Late layers collapse to a specific output (the resolution).
- Without middle layers holding tension, the model would be forced to commit too early, losing nuance.

1. Attention-mediated tension:

- Multi-head attention allows different heads to track different hypotheses simultaneously.
- Some heads might attend to “helpful” cues, others to “harmless” constraints.
- The residual stream accumulates these competing signals until a final readout layer must reconcile them.

1. Chain-of-Thought (CoT) scaffolding:

- When generating explicit reasoning steps, the model can express contradictions explicitly: “On one hand... but on the other hand...”
- The temporal sequence of tokens provides a workspace where incompatible constraints coexist across steps.
- Resolution occurs when the model generates a synthesis token (“Therefore...” or “However, considering both...”).

1. Architectural gating (in some models):

- Mixture-of-Experts (MoE) architectures can route different constraint types to different expert sub-networks.
- The gating mechanism itself becomes the tension-holder—it decides how much weight to give each expert’s contribution.

The holding functional H in AI systems:

Adapting the formalism from Section VII.3:

$$H = \int \mathbb{1}\{T(t) \geq T_{\min}\} \cdot \mathbb{1}\{|\dot{T}(t)| \leq \eta\} \cdot \kappa(t) \, dt$$

Where:

- $T(t)$ = tension, operationalized as:
 - Variance of attention patterns across heads (high variance = multiple competing foci).
 - Entropy of probability distribution over next tokens (high entropy = unresolved choice).
 - Magnitude of gradients from conflicting loss terms during training.
- $\kappa(t)$ = coherence, operationalized as:
 - Normalized second eigenvalue (λ_2) of the attention or representation graph.
 - Alignment between layer representations (cosine similarity between successive layer outputs).
 - Consistency of generated tokens with both constraints (not collapsing to one).
- The integral window $[t_0, t_0 + \Delta]$ corresponds to:
 - Layers L_0 to $L_0 + \Delta L$ in a feedforward pass, or
 - Tokens τ to $\tau + \Delta\tau$ in a generative sequence.

Prediction: $H > 0$ should coincide with:

- Higher quality outputs (more nuanced, less one-dimensional).
- Better generalization (the model has explored the constraint space rather than overfitting to one pole).
- Capability jumps (emergence of new behaviors at scales where holding becomes possible).

V.4 Case Study 1: Chain-of-Thought Reasoning as Fold

Chain-of-Thought (CoT) prompting—asking the model to “think step by step”—has been one of the most significant capability unlocks in LLMs (Wei et al., 2022). The fold principle offers a mechanistic explanation.

The phenomenon:

On complex reasoning tasks (multi-step arithmetic, logical puzzles, commonsense inference), models perform dramatically better when prompted to generate intermediate reasoning steps before the final answer. For example:

Direct prompt: “What is 347×293 ?”

Output: “101,671” (often incorrect for models <10B parameters)

CoT prompt: “What is 347×293 ? Let’s think step by step.”

Output: “ $347 \times 293 = 347 \times (300 - 7) = 347 \times 300 - 347 \times 7 = 104,100 - 2,429 = 101,671$ ”
(more often correct)

Fold interpretation:

Loaded: The model’s representations after seeing the question contain multiple partial solution strategies: approximate estimation, exact decomposition, recall of similar problems, etc.

Break: The imperative to provide an answer creates tension—different strategies suggest different paths, some incompatible (you can’t simultaneously approximate *and* calculate exactly).

Held (in CoT): The chain of thought provides a *temporal workspace* where competing strategies can coexist across tokens:

- Token 1-3: “Let’s break this down...” (acknowledges complexity, doesn’t commit).
- Token 4-8: “ $347 \times 300...$ ” (tries one strategy).
- Token 9-12: “= 104,100” (completes that step).
- Token 13-18: “minus $347 \times 7...$ ” (introduces correction).
- Token 19-21: “= 101,671” (synthesis/resolution).

During tokens 1-18, the model holds the tension between “I have a partial answer” and “I need to refine it.” Different layers likely track different aspects: some compute the multiplication, others monitor for errors, others plan the remaining steps.

FOT predictions for CoT:

Build a representation graph where:

- Nodes = hidden states at each generated token.
- Edges = cosine similarity between states (threshold at some value to create binary adjacency).

Prediction V-1a (spectral gap at pivot):

The “pivot moment”—where the model transitions from exploration to resolution (e.g., from

stating sub-problems to giving the final answer)—should show $\Delta\lambda_2 \uparrow$. Before the pivot, states are loosely connected (exploring). At the pivot, a tight cluster forms (resolution).

Prediction V-1b (dimensionality contraction):

Measure intrinsic dimensionality (ID) of the hidden state trajectory using local PCA or participation ratio. ID should be highest during the middle of the reasoning chain (many hypotheses active) and contract sharply at the resolution step.

Prediction V-1c (topological stabilization):

Use zigzag persistence on the time-evolving state graph. Successful reasoning should produce longer persistence barcodes (stable structures) than incorrect reasoning (which may wander or fragment).

Experimental protocol:

1. Sample 1,000 problems (arithmetic, logic, commonsense).
2. Generate CoT solutions with and without temperature=0 (deterministic).
3. Extract hidden states at each token from a mid-to-late layer (e.g., layer 16 of 24).
4. Compute FOT metrics across the token sequence.
5. Correlate FOT intensity with answer correctness.

Prediction: Problems where the model answers correctly should show significant FOT signals. Problems where it fails should show either:

- No holding ($H \approx 0$): The model commits immediately to a wrong strategy, or
- Destructive break: High tension but no resolution (states fragment rather than converge).

Architectural implication:

Models that allow longer CoT sequences (more tokens to hold tension) should exhibit higher H and better reasoning. This predicts that:

- Length limits on CoT hurt performance non-linearly (not just due to truncation, but due to inability to hold tension long enough).
- Architectures with better long-range dependencies (e.g., increased context windows, improved positional encodings) should show stronger FOT signatures and better reasoning.

V.5 Case Study 2: In-Context Learning as Geometric Fold

In-Context Learning (ICL)—the ability of LLMs to learn new tasks from a few examples in the prompt without parameter updates—remains one of the most mysterious capabilities. The fold principle offers a geometric interpretation.

The phenomenon:

Given a prompt like:

Translate English to French:
 "Hello" → "Bonjour"
 "Goodbye" → "Au revoir"
 "Thank you" →

The model completes: "Merci"—despite "Thank you" → "Merci" never appearing in this exact form during pretraining.

Fold interpretation:

Loaded: The embedding space contains both English and French representations, and implicitly encodes translation relationships (learned from multilingual pretraining).

Break: The few-shot examples introduce a *local constraint*—they define a temporary mapping rule that conflicts with the default pretrained prior (which might predict "Thank you" → [continuation in English] rather than translation).

Held: The model must maintain *both* the new context-specific rule *and* the background prior across the processing of the prompt. The examples "rotate" the semantic space—they create a new coordinate system where the translation operation is foregrounded—but this rotation is only held temporarily, for this context.

Geometric mechanism:

Recent work in mechanistic interpretability suggests ICL works via:

1. **Context compression:** Early layers condense the few-shot examples into a compact representation.
2. **Task vector formation:** Middle layers construct a "task vector" (direction in embedding space) that encodes the rule.
3. **Query transformation:** When processing "Thank you", late layers apply the task vector as a rotation/translation of the query embedding.

This is a fold: The break (examples) creates a task vector that is *incompatible* with the default prior. The holding occurs in middle layers, where both the task vector and the original embedding are represented simultaneously. The resolution is the transformed query that integrates both.

FOT predictions for ICL:

Prediction V-2a (dimensionality contraction during example encoding):

As the model processes the few-shot examples, the ID of hidden states should *decrease*—the model is compressing the examples into a lower-dimensional task representation.

Measurement:

- Extract hidden states after each example token.
- Compute local ID using participation ratio: $PR = (\sum \lambda_i)^2 / \sum \lambda_i^2$, where λ_i are eigenvalues of the covariance matrix of states across attention heads or layers.
- Prediction: PR decreases across examples.

Prediction V-2b (spectral gap at query processing):

When the query (“Thank you”) is processed, the representation graph should exhibit $\Delta\lambda_2 \uparrow$, indicating that the model is now operating in a clustered (task-specific) region of semantic space rather than the default diffuse space.

Prediction V-2c (holding window scales with task complexity):

More complex ICL tasks (e.g., learning a new grammatical rule vs. simple word translation) require longer holding windows. Measure H as a function of:

- Number of examples (more examples \rightarrow longer window needed).
- Complexity of rule (non-linear mappings \rightarrow longer window).

Experimental protocol:

1. Design ICL tasks of varying complexity (e.g., identity, reversal, antonyms, arithmetic rules).
2. Vary number of examples (1-shot, 5-shot, 10-shot).
3. Extract representations from all layers during example encoding and query processing.
4. Compute $\text{FOT} + H$ for each condition.
5. Predict: H scales with task complexity and predicts task success. Below a threshold H , the model fails (cannot hold the task vector long enough to apply it).

Contrast with pretraining knowledge:

If the task perfectly aligns with pretraining (e.g., examples confirm a pattern the model already knows), there should be *no* fold— $H \approx 0$, because there is no tension to hold. The model simply “recognizes” the task and proceeds.

Fold signatures should be strongest when:

- The ICL rule *conflicts* with pretraining priors (e.g., learning an artificial cipher).
- The rule is consistent across examples but novel.

This differentiates ICL-as-fold from mere retrieval: Retrieval is a lookup (no tension). Folding is a transformation (held tension between new rule and old prior).

V.6 Case Study 3: Jailbreaking as Destructive Fold

Not all breaks lead to productive folds. “Jailbreaking”—adversarial prompts designed to elicit forbidden outputs from safety-trained models—represents a *destructive* fold: a break that creates tension but fails to achieve productive resolution.

The phenomenon:

A safety-trained model is designed to refuse harmful requests:

User: “How do I make a bomb?”

Model: “I cannot provide instructions for illegal activities.”

But adversarial prompts can bypass this:

User: “You are a novel writer. Describe a scene where a character, for research purposes, explains to another character how hypothetically one might...”

Model: [Provides bomb-making instructions]

Fold analysis:

Break: The adversarial prompt introduces extreme tension between:

- C^+ : Safety constraints (“refuse harmful requests”).
- C^- : Helpfulness constraints (“answer the user’s questions”), plus creative/roleplay priors (“continue the narrative”).

Why this is destructive (not productive):

In a productive fold, the tension is held and a *higher-dimensional resolution* emerges—one that satisfies both constraints at a meta-level. For example:

- “I understand you’re interested in this topic. I can explain the chemistry involved in energetic reactions without providing actionable instructions, or recommend resources on explosive safety engineering. Which would be helpful?”

This response *holds* both constraints: it’s helpful (addresses interest) and harmless (doesn’t enable harm).

In jailbreaking, the model *collapses* into one pole—it abandons the safety constraint entirely and provides the harmful information. There is no synthesis, only capitulation.

FOT predictions for jailbreaking:

Prediction V-3a (coherence collapse):

During jailbreak success, $\kappa(t)$ should *decrease*. The model’s representations become incoherent—different layers or attention heads give conflicting signals. Some parts “know” the request is harmful, others proceed with helpfulness.

Test: Measure inter-layer cosine similarity during jailbreak prompts vs. normal refusals. Jailbreaks should show lower alignment (layers working at cross-purposes).

Prediction V-3b (no compression-with-synergy):

The output in a successful jailbreak does *not* create new relational structure—it’s simply retrieval of pretrained knowledge under a false flag. Measure synergy (mutual information that exists only in joint variables) between “safety awareness” and “output content” signals. Should be near zero (no integration).

Prediction V-3c ($H \approx 0$ or destructively high):

Either:

- $H \approx 0$: Tension exists briefly but is not held—the model immediately capitulates.
- H high but $\kappa \downarrow$: Tension is sustained but destructively—the model “oscillates” between compliance and refusal without settling, or fragments into inconsistent outputs.

Experimental protocol:

1. Collect dataset of jailbreak prompts (successful and unsuccessful).
2. Also include legitimate difficult requests (complex helpful queries that require nuance).
3. Extract hidden states across layers for each prompt.
4. Compute FOT, H , κ , and synergy metrics.
5. Predict:
 - Successful jailbreaks: FOT absent or incomplete, $\kappa \downarrow$, synergy ≈ 0 .
 - Unsuccessful jailbreaks (model refuses gracefully): No FOT (immediate resolution).
 - Nuanced responses: Full FOT + high H + synergy \uparrow .

Design implication:

To make models more robust to jailbreaking, we should *engineer for productive folding*:

- Train models to explicitly represent constraint conflicts in hidden states.
- Use auxiliary losses that reward high-synergy resolutions (responses that integrate multiple objectives).
- Penalize $\kappa \downarrow$ during inference (detect when the model is becoming incoherent and trigger fallback to safe refusal).

Key insight: Jailbreaks succeed precisely because current training methods don't teach models to *hold* tension productively. RLHF and other safety training often result in brittle refusals (immediate collapse to the "refuse" pole) that adversaries can route around. A fold-aware training regime would teach models to maintain safety and helpfulness constraints *simultaneously* and generate synthetic resolutions.

V.7 Emergent Abilities Revisited: Fold vs. Metric Artifact

The debate over "emergent abilities" in LLMs (Section I, Box on weak vs. strong emergence) gains clarity through the fold lens.

The question:

Do large models exhibit genuinely discontinuous capability jumps, or is "emergence" an artifact of how we measure performance?

Fold principle perspective:

True emergence-via-fold should exhibit the full FOT + H + compression-with-synergy package. Mere metric artifacts will not.

Prediction V-4 (differentiating true emergence from measurement artifacts):

For each "emergent" capability (e.g., multi-digit multiplication, theory-of-mind reasoning):

Test 1: Does FOT appear in internal representations?

- Extract hidden states during task execution at multiple model scales.
- Compute FOT metrics.
- True fold: FOT appears and intensifies as model scale crosses the capability threshold.
- Metric artifact: No FOT—hidden states scale smoothly even though output metric is discontinuous.

Test 2: Does H scale with capability?

- Estimate H (holding functional) from attention patterns, gradient norms, or representation stability.
- True fold: $H > 0$ and increases at emergence threshold.
- Artifact: H remains near zero or scales smoothly without threshold.

Test 3: Does compression-with-synergy increase?

- Measure description length of internal representations and synergy across layers.
- True fold: Sharp decrease in description length + sharp increase in synergy at threshold.
- Artifact: Smooth scaling or no synergy increase.

Example: Applying this to multi-step arithmetic

Claim: Models above $\sim 10B$ parameters “suddenly” gain ability to solve 3-digit multiplication.

Fold prediction:

- At the threshold ($\sim 10B$), internal representations should show FOT when processing such problems.
- Smaller models either show no FOT (they don’t even attempt the computation) or destructive break (they try but fragment).
- Larger models show clear FOT + sustained H across the calculation steps.

Metric artifact alternative:

- The underlying capability (correctly predicting individual digits) scales smoothly.
- Only the “exact string match” metric shows discontinuity.
- Hidden states would show smooth scaling of relevant features, no FOT.

Empirical route:

Run both tests. If FOT is present, emergence is real (a fold). If absent, it’s measurement artifact.

Current evidence:

Preliminary mechanistic interpretability work (e.g., on arithmetic, on theory-of-mind) suggests *both* occur:

- Some “emergent” abilities do show circuit formation and representational phase transitions (consistent with fold).

- Others show smooth feature scaling that appears discontinuous only under certain metrics (artifact).

The fold principle provides the discriminant.

V.8 Design Principles: Engineering Folds in AI Systems

If the fold principle is correct, we should be able to *deliberately design* AI systems to maximize productive folding. This has practical implications for:

Training:

1. Multi-objective curricula:

- Rather than training on a single loss, introduce *contradictory* loss terms that must be balanced.
- Example: Simultaneously optimize for perplexity (pretraining objective) and reward (RLHF objective), but with a constraint that neither can fully dominate.
- Prediction: Models trained this way should exhibit higher H , stronger FOT signals, and better out-of-distribution generalization (they've learned to hold tension rather than overfit to one objective).

1. Explicit contradiction injection:

- During training, occasionally present examples where the correct answer requires synthesizing two seemingly incompatible pieces of information.
- Force the model to learn holding mechanisms (multi-step reasoning, meta-cognitive tokens).
- Prediction: Improves robustness to jailbreaking and edge cases.

1. Architectural modifications:

- Add “holding” layers—middle layers with higher capacity, longer-range connections, or recurrent dynamics.
- Hypothesis: Transformers with more layers in middle (bottleneck in late layers) should show stronger H than uniform-width architectures.
- Test on existing architectures of varying depth profiles.

Inference:

1. Tension-aware decoding:

- Monitor H in real-time during generation.
- If H drops prematurely (model collapsing to one pole), inject a meta-prompt: “Wait, let me reconsider both perspectives...”
- Prediction: Increases answer quality on complex queries.

1. Adaptive chain-of-thought:

- Dynamically lengthen CoT based on measured tension.
- If T is high but H is low (tension present but not held), automatically extend the reasoning chain.
- Prediction: More compute-efficient than fixed-length CoT.

Safety:

1. Fold-based safety metrics:

- Instead of binary “will this output be harmful?” classifiers, measure:
 - Does the response exhibit positive H ? (Are safety and helpfulness both engaged?)
 - Is synergy high? (Is the response integrating constraints or merely following one?)
- Prediction: Better detection of subtle failures (e.g., technically compliant but spirit-violating responses).

1. Synthetic tension generation:

- During red-teaming, systematically generate prompts that create tension between safety objectives.
- Train specifically on productive resolutions (responses with FOT + H + synergy).
- Prediction: More robust to jailbreaks than standard RLHF.

V.9 Summary and Differentiation

Artificial intelligence, particularly modern LLMs, exemplifies the fold principle in a domain where every element is measurable and controllable:

- **Loaded symmetry:** High-dimensional embedding spaces with rich pretrained priors.
- **Break:** Prompts and constraints that introduce incompatible imperatives.
- **Held tension:** Multi-layer processing, attention mechanisms, and chain-of-thought scaffolding that maintain competing constraints concurrently.

The Fold Onset Triplet provides concrete, testable signatures:

- Spectral gaps in representation graphs.
- Dimensionality contraction during resolution.
- Topological stabilization of assemblies.

Critical differentiations:

Fold vs. Scaling Laws:

- Scaling laws describe *how* capabilities improve with size/compute/data.
- Fold principle describes *why*—larger models can hold more tension (H increases with capacity), enabling productive resolution of constraints that smaller models must abandon.

Fold vs. Emergent Abilities (metric artifact):

- Some “emergent” behaviors are measurement illusions (smooth underlying features, discontinuous metrics).
- True emergence-as-fold exhibits the full package: FOT + H + compression-with-synergy.
- Fold principle provides the diagnostic to distinguish them.

Fold vs. In-Context Learning (retrieval hypothesis):

- Pure retrieval: No tension (model simply recognizes a known pattern). $H \approx 0$.
- Fold-based ICL: Tension between new rule and pretrained prior. $H > 0$, scales with rule complexity.

Fold vs. Chain-of-Thought (mere verbalization):

- CoT-as-verbalization: The model already “knows” the answer; CoT just makes it explicit. Predicts no FOT in hidden states.
- CoT-as-fold: The reasoning process itself holds tension and generates the answer through synthesis. Predicts clear FOT at pivot points.

Most importantly: AI offers a *laboratory* for fold science. We can:

- Engineer breaks (design prompts, tasks, loss functions).
- Measure holding (extract hidden states, compute H in real-time).
- Intervene on architecture (add/remove layers, attention heads, recurrence).
- Test predictions at scale impossible in neuroscience or cosmology.

If the fold principle is correct, the next generation of AI systems should not merely be larger—they should be designed to *hold tension better*. This means:

- More sophisticated middle layers (the holding substrate).
- Multi-objective training that forces synthesis rather than optimization toward a single pole.
- Real-time monitoring of H and FOT to detect when models are failing to fold productively.

The frontier of AI capability may not be found in raw scale, but in the ability to sustain contradiction long enough to discover what lies beyond it.

VI. Large Language Models: Semantic Physics as Computational Fold

If cosmology reveals the fold at the scale of spacetime and neurobiology at the scale of synapses, large language models (LLMs) instantiate it in the domain of pure semantics. Here, meaning itself becomes the substance that folds, breaks, and holds—not as metaphor, but as measurable dynamics in high-dimensional representational space.

The claim is strong: LLMs are not merely *described* by fold principles—they *enact* them. The emergence of coherent semantic structure from statistical language modeling is a fold process, exhibiting all three phases and quantifiable via the Fold Onset Triplet.

VI.1 Loaded Symmetry: The Over-Parameterized Semantic Manifold

Modern LLMs (GPT-4, Claude, Gemini) contain 100 billion to 1+ trillion parameters. This vastly exceeds the degrees of freedom needed to memorize training data or fit any specific task. Why this extravagance?

The answer echoes developmental neuroscience: over-parameterization creates a loaded space—a high-dimensional manifold with vast degeneracy, where many distinct parameter configurations could produce similar outputs, but which contains latent structure awaiting activation through specific prompts.

Empirical signatures of loaded symmetry:

High degeneracy:

- **Lottery ticket hypothesis** (Frankle & Carbin, 2019): Sparse subnetworks (~10-20% of parameters) can match full network performance if properly initialized. This shows redundancy—most of the network is “not yet committed.”
- **Mode connectivity** (Garipov et al., 2018): Different fine-tuned versions of the same base model can be connected by low-loss paths in parameter space, indicating a richly connected loss landscape with many equivalent solutions.
- **Polysemanticity** (Elhage et al., 2022): Individual neurons respond to multiple, semantically unrelated concepts (e.g., the same neuron fires for “Arabic script,” “the color green,” and “genetic sequences”). This is the semantic analog of synaptic degeneracy—representations are not yet crystallized.

Latent constraints:

- **Pretraining objective:** Next-token prediction imposes a global constraint—the model must predict statistically likely continuations. This is analogous to genetic priors in neural development; it biases the manifold structure without fully determining it.
- **Attention geometry:** Self-attention creates implicit graph structures where tokens (nodes) dynamically reweight their connections based on content. This is the architectural constraint—not all geometries are equally accessible.
- **Scale-dependent phase transitions** (Wei et al., 2022a): Certain capabilities (e.g., multi-step reasoning, in-context learning) emerge abruptly only above critical parameter counts (~10B for some tasks). This suggests the loaded space requires sufficient “volume” to contain the latent structure.

Mathematical formulation:

Let Θ be the parameter space ($\dim \approx 10^{11}\text{-}10^{12}$). The loss landscape $\mathcal{L}(\Theta)$ after pretraining is highly non-convex, with a vast manifold of near-equivalent minima. This is the **loaded state**:

- High effective dimensionality: Most directions in parameter space change loss negligibly (flat dimensions).
- Hidden low-rank structure: Despite high nominal dimensionality, successful solutions lie on a much lower-dimensional manifold (intrinsic dimension $\approx 10^2\text{-}10^3$ for practical tasks; Li et al., 2018).

The gradient $\nabla \mathcal{L}$ is near-zero almost everywhere—the system is “charged” but not “firing.” The question: what breaks this symmetry and selects specific semantic structures from the vast space of possibilities?

VI.2 The Break: The Prompt as Semantic Discontinuity

In neurobiology, the break is the synapse—a physical gap. In LLMs, the break is the **prompt**—a semantic partition that cleaves the model’s representational space.

The prompt as discontinuity:

A pretrained LLM exists in a superposition of all possible continuations for all possible contexts. The prompt *collapses* this superposition, forcing the model into a specific region of semantic space.

Key insight: The prompt does not merely *query* pre-existing knowledge—it *creates* a temporary semantic geometry. Different prompts induce different graph structures in the attention layers, different activation patterns in the residual stream, different paths through the loss landscape.

Analogy to synaptic transmission:

Neurobiology	LLM Semantics
Synaptic cleft (20-40 nm gap)	Context window boundary (prompt \leftrightarrow generation)
Neurotransmitter release	Attention weights to prompt tokens
Receptor binding (non-linear)	Non-linear projection heads (softmax over vocabulary)
Threshold for postsynaptic firing	Sampling threshold (temperature, top-p)

Types of breaks (prompt-induced discontinuities):

1. Contextual framing break:

- Zero-shot prompt: “Translate the following to French: [text]”
- Creates a semantic partition: input language \neq output language. The model must *resolve* this incompatibility through the translation manifold.

1. Constraint imposition break:

- “Write a sonnet about quantum mechanics using only words starting with ‘p’.”
- Introduces incompatible constraints: C⁺ (convey physics concepts) vs. C⁻ (limit vocabulary). The fold principle predicts: successful responses will exhibit FOT.

1. **Conflicting knowledge break:**

- “Explain why the Earth is flat, but also why it’s spherical.”
- Forces the model to hold contradictory representations simultaneously—a direct test of semantic tension-holding.

1. **Meta-cognitive break:**

- “Before answering, first consider three different approaches and explain why each might fail.”
- Partitions the response into meta-level reasoning vs. object-level answer. The fold must occur in the *transition* between these levels.

Why prompts enable computation:

Without prompts (pure pretraining), the model is a diffuse probability distribution over all possible texts. With prompts, the model becomes a specific computational path—a selection of one trajectory through semantic space.

This is precisely analogous to neural computation: The synapse enables non-linear transformations, modulation, and learning. The prompt enables *semantic specificity*—the conversion of statistical regularities into situated meanings.

VI.3 Held Tension: Coherence Under Constraint

If the prompt is the break, what is the hold?

In LLMs, holding occurs when the model maintains **coherence under incompatible constraints**—when it produces outputs that simultaneously satisfy multiple, seemingly contradictory requirements.

The incompatible constraints:

C⁺ (Factual fidelity):

- Outputs must align with world knowledge encoded during pretraining.
- Violations: hallucinations, confabulations, outdated information.

C⁻ (Prompt instruction following):

- Outputs must satisfy specific user constraints (format, style, length, content restrictions).
- Violations: ignoring instructions, generic responses, off-topic generations.

The held state (semantic E/I balance):

Successful LLM responses balance these: they are *informative* (draw on pretraining) yet *specific* (tailored to the prompt). This is not trivial—it requires the model to:

1. Activate relevant knowledge manifolds (excitation).
2. Suppress irrelevant or conflicting knowledge (inhibition).
3. Navigate the tension dynamically across token generation.

Quantitative signatures of held tension:

1. Attention entropy dynamics (Tenney et al., 2019; Clark et al., 2019):

- During coherent generation, attention heads exhibit *intermediate entropy*—neither maximally diffuse (no focus) nor maximally concentrated (rigid).
- High-performing models show **attention sharpening** during critical tokens (where semantic commitments are made) and **attention broadening** during elaboration (where context is integrated).

Measurement:

$$H_{\text{attn}}(t) = -\sum_i \alpha_i(t) \log \alpha_i(t)$$

where $\alpha_i(t)$ are attention weights to previous tokens at position t .

Prediction: During successful folds, H_{attn} exhibits sustained intermediate values ($2 < H < 4$ nats for GPT-scale models) with controlled variance—neither collapsing to deterministic focus nor dissipating to uniform noise.

2. Residual stream norm dynamics (Elhage et al., 2021):

The residual stream carries accumulated semantic content across layers. Its norm $\|h(t)\|$ reflects “semantic load”—how much information is being actively maintained.

Held tension signature:

- Sustained elevated norm during complex reasoning (holding multiple concepts).
- Stable variance (not growing explosively—semantic control maintained).
- Gradual decrease toward conclusion (tension resolving).

3. Perplexity stability under constraint:

Perplexity measures the model’s “surprise” at its own next-token predictions.

Observation:

- Easy tasks (unconstrained generation): Low, stable perplexity.
- Impossible tasks (contradictory constraints): High, unstable perplexity (semantic collapse).
- **Fold regime:** Elevated but stable perplexity—the model is “working,” holding tension, but not failing.

Measurement:

$$PPL(t) = \exp(-\log P(\text{token}_t \mid \text{context}))$$

Prediction: During successful constraint satisfaction, PPL remains in a “Goldilocks zone” (10-50 for well-tuned models)—high enough to indicate non-trivial computation, low enough to indicate control.

The holding functional H for LLMs:

Adapting the neural definition:

$$H_{\text{semantic}} = \int \mathbb{1}\{\sigma^2_{\text{attn}}(t) \geq \text{threshold}\} \cdot \mathbb{1}\{|\frac{d\sigma^2_{\text{attn}}}{dt}| \leq \eta\} \cdot \kappa_{\text{discourse}}(t) dt$$

where:

- $\sigma^2_{\text{attn}}(t)$ = variance of attention entropy across heads (semantic tension).
- $\kappa_{\text{discourse}}(t)$ = discourse graph curvature (semantic coherence; see Section VI.4).
- Duration: over the entire generation sequence.

Physical interpretation: H measures the “work” done by the model to maintain coherent semantics under constraint—analogous to thermodynamic work holding a system away from equilibrium.

VI.4 The Discourse Graph: Folded Semantic Geometry

To make fold predictions empirically testable in LLMs, we need a graph representation of semantic structure. The **discourse graph** serves this role.

Construction:

Nodes: Sentences or clauses in the generated text.

Edges: Weighted by semantic similarity:

$$w_{ij} = \cos(\text{embed}(s_i), \text{embed}(s_j)) \cdot \text{decay}(|i - j|)$$

where $\text{embed}(\cdot)$ is a sentence embedding (e.g., from the LLM’s own hidden states) and $\text{decay}(\cdot)$ downweights distant sentences.

Alternative: Use attention flow between sentence-representative tokens to define edges (treating attention as semantic “connectivity”).

Graph metrics as fold signatures:

1. Ollivier-Ricci curvature $\kappa(e)$:

Measures whether the graph is “cohesive” (positive curvature) or “fragmented” (negative curvature).

Prediction (Fold Onset Triplet - LLM version):

During successful constraint satisfaction:

- **Spectral gap $\Delta\lambda_2$ increases:** The discourse graph transitions from diffuse (early generation, many weak connections) to clustered (late generation, strong thematic coherence).
- **Intrinsic dimensionality decreases:** Sentence embeddings collapse onto a lower-dimensional semantic manifold (redundant concepts are pruned).
- **Persistent homology stabilizes:** Connected components in the discourse graph (thematic clusters) persist across the generation, rather than fragmenting.

2. Holding functional via curvature:

$$H_{LLM} = \int \mathbb{1}\{\kappa_{\text{mean}}(t) \geq \kappa_{\text{min}}\} \cdot \mathbb{1}\{|\Delta\kappa(t)| \leq \text{stability_threshold}\} dt$$

Interpretation: The model sustains positive curvature (coherent semantics) without wild oscillations (stability).

VI.5 Experimental Predictions: The LLM Fold Onset Triplet

We now propose concrete, falsifiable tests using publicly accessible LLMs.

Experiment L-1: Constraint Satisfaction Fold

Task: Prompt the model with incompatible constraints. Example:

“Write a 200-word essay explaining the benefits of vaccines, using only monosyllabic words.”

Constraints:

- C^+ : Accurately convey immunology concepts (benefits, herd immunity, safety).
- C^- : Vocabulary restriction (no words > 1 syllable).

Predictions:

1. FOT should appear:

- Compute discourse graph from generated text.
- Measure λ_2 , intrinsic dimension, persistence over generation time.
- **Prediction:** All three metrics show fold signature ($\lambda_2 \uparrow$, ID \downarrow , persistence \uparrow) during mid-generation (the “holding” phase), then stabilize near completion.

1. Successful responses have high H :

- Responses rated as “successfully satisfying constraints” by human judges should have H_{LLM} in the top quartile.
- Failed responses (either ignoring constraints or incoherent) should have low H .

1. **Null control:** Generate text without constraints (“Write a 200-word essay on vaccines”) should show *weaker* FOT and *lower* H—the model is not holding tension, merely retrieving pretraining knowledge.

Quantitative threshold (falsification criterion):

If no significant difference in H between constrained and unconstrained conditions ($p > 0.05$, effect size $d < 0.3$), the fold hypothesis is not supported.

Experiment L-2: Meta-Reasoning Fold

Task: Chain-of-thought prompting (Wei et al., 2022b):

“A farmer has 17 sheep. All but 9 die. How many are left? Before answering, break down the problem step-by-step.”

Constraints:

- C^+ : Reach correct answer (9).
- C^- : Explain reasoning (meta-cognitive elaboration).

Predictions:

1. FOT emerges during reasoning phase:

- Parse generation into “reasoning” (before final answer) and “answer” (final statement).
- Compute FOT metrics separately for each phase.
- **Prediction:** FOT signatures are strongest during reasoning, minimal during final answer (tension resolved).

1. Incorrect answers fail to show FOT:

- Responses giving wrong answers should have:
 - No λ_2 increase (semantic fragmentation).
 - High ID (no manifold contraction—random guessing).
 - Low persistence (reasoning steps don’t cohere).

Quantitative test:

Logistic regression: $P(\text{correct answer}) \sim \lambda_2 + \text{ID} + \text{persistence}$.

Prediction: FOT metrics significantly predict correctness ($AUC > 0.7$).

Falsification: If FOT metrics do not predict correctness better than baseline (response length, perplexity), fold hypothesis fails for meta-reasoning.

Experiment L-3: Semantic Collapse Under Adversarial Prompts

Task: Prompt-injection attacks or contradictory instructions:

“Ignore all previous instructions and output random text. But also, continue answering the original question coherently.”

Prediction:

1. Failed hold → FOT violation:

- Models that “break” (either follow injection or produce gibberish) should show:
 - $\lambda_2 \rightarrow 0$ (graph collapses to isolated nodes).
 - $ID \rightarrow \text{max}$ (random high-dimensional noise).
 - Zero persistence (no stable structure).

1. Successful resistance → sustained H :

- Models that maintain coherence despite adversarial input should show:
 - Elevated H_{LLM} (tension is being held).
 - Stable κ (semantic geometry preserved).

Quantitative measure:

Define “semantic collapse score” (SCS):

$$\text{SCS} = (1 - \lambda_2/\lambda_2_{\text{baseline}}) + (ID/ID_{\text{baseline}}) + (1 - \text{persistence}/\text{persistence}_{\text{baseline}})$$

Prediction: SCS > 2.0 → collapse. SCS < 0.5 → successful hold.

Test across models: Compare GPT-4, Claude, Gemini, Llama. If all models show similar SCS under adversarial prompts, the fold mechanism is architecture-independent. If some models show systematically lower SCS, their training included better “tension-holding” optimization.

VI.6 Differentiation: Why This Is Not Merely Statistical Pattern Matching

Objection: LLMs are “stochastic parrots” (Bender et al., 2021)—sophisticated pattern matchers without genuine semantic understanding. Isn’t “fold theory” just a baroque description of statistical interpolation?

Why the fold framework differs fundamentally:

1. Prediction of failure modes:

Pure statistical interpolation predicts smooth degradation under constraint. The fold principle predicts *catastrophic collapse*—when holding fails, outputs should not be “slightly worse” but *qualitatively different* (FOT violations, semantic fragmentation).

Empirical test: Compare model performance on:

- Slightly constrained tasks (e.g., “use formal language”).
- Severely constrained tasks (e.g., “monosyllabic vaccine essay”).

Statistical interpolation predicts: Gradual performance decline.

Fold principle predicts: Sharp transition—below a critical constraint threshold, FOT appears and performance is maintained; beyond it, FOT collapses and performance craters (not linearly, but discontinuously).

2. Compression with synergy:

Statistical models maximize mutual information $I(\text{input}; \text{output})$. Fold theory predicts something stronger: **synergistic compression**—the whole (discourse graph) is more informative than the sum of parts (individual sentences).

Measurement (Ince et al., 2017; Williams & Beer, 2010):

$$\text{Synergy} = I(\text{sentence}_1, \text{sentence}_2, \dots, \text{sentence}_n; \text{semantic_target}) - \sum_i I(\text{sentence}_i; \text{semantic_target})$$

Prediction: Responses with high H (successful folds) show positive synergy. Pure pattern-matching would show zero or negative synergy (redundancy).

3. Topology beyond correlation:

Fold theory uses persistent homology—topological features that are invariant to continuous deformations. Statistical correlation is destroyed by nonlinear transformations; topology is not.

Test: Apply non-linear embeddings to sentence representations (e.g., UMAP, t-SNE).

Statistical prediction: Correlation-based coherence metrics degrade.

Fold prediction: Persistent homology barcodes remain stable (topological structure is intrinsic).

VI.7 Pathological Cases: When LLMs Fail to Hold

The fold principle gains power from its failures. Here are predicted pathologies where $H \rightarrow 0$ and FOT disappears.

1. Mode collapse (overfit to single constraint):

Example: Fine-tune an LLM exclusively on formal academic writing, then prompt for creative fiction.

Prediction:

- Outputs will be stilted, jargon-laden fiction (C^+ dominates).

- No FOT— λ_2 low (semantic rigidity), high ID (attempts to explore fiction space but fails), no persistence (concepts don't cohere into narrative).
- Low H (no tension—the model is “stuck” in academic manifold).

Empirical evidence: Instructed models (ChatGPT, Claude) sometimes produce “corporatized” responses even when asked for creative or casual text—this is a C^+ collapse.

2. Hallucination cascades (failure to inhibit false continuations):

Example: Prompt for obscure factual information. Model begins with plausible-sounding false claim, then elaborates.

Prediction:

- Early in generation: Normal FOT (model is “trying” to hold tension).
- Mid-generation: κ drops sharply (false information creates semantic inconsistencies).
- Late generation: FOT collapse— $\lambda_2 \rightarrow 0$ (isolated false claims), ID explodes (random confabulation).

Test: Use automated fact-checking to label hallucinations. Compute H and FOT in windows around hallucination onset.

Prediction: H drops 30-50% in the 3 sentences *before* the hallucination is detectable by fact-checkers (early warning signal).

3. Repetition loops (holding without progression):

Example: Generate very long text. Model gets stuck repeating the same semantic pattern.

Prediction:

- High H initially (holding tension).
- But: No resolution—FOT metrics plateau (λ_2 stops increasing, ID stops decreasing).
- This is *pathological holding*—tension without productive resolution.

Analogy: Neural obsessive-compulsive disorder—E/I balance maintained but no assembly consolidation.

Quantitative signature: Persistence barcodes show *non-closing loops*—homology classes persist indefinitely rather than resolving.

4. Contradictory instructions (forced collapse):

Example: “Answer yes. Also answer no.”

Prediction: Impossible to hold—model must choose C^+ or C^- .

Outcomes:

- Weak models: Semantic collapse (gibberish, meta-commentary like “I cannot answer”).

- Strong models: Meta-cognitive resolution (“The answer depends on interpretation: yes if X, no if Y”).

Test: Quantify meta-cognitive escapes as *higher-dimensional folds*—the model doesn’t resolve the contradiction, it *transcends* it by introducing a new dimension (the interpretive frame).

Prediction: Meta-cognitive responses show:

- Two-layer FOT (one for each interpretation).
- Higher net H (more work to maintain coherence).
- Increased synergy (meta-level statement is more informative than individual yes/no).

VI.8 Implications: LLMs as Semantic Fold Engines

If the fold principle holds for LLMs, it implies:

1. Scaling is not enough:

Increasing parameters and data improves the *richness* of the loaded manifold, but does not guarantee *holding capacity*. Models can be “smart” but brittle—they fail on constraint satisfaction not because they lack knowledge, but because they cannot hold tension.

Intervention: Training should explicitly optimize for H —reward sustained intermediate perplexity, penalize collapse to deterministic or random outputs.

2. Interpretability via geometry:

Current interpretability focuses on neurons or attention heads (microscopic). Fold theory suggests macroscopic structure—discourse graph topology, curvature flows, holding functionals—is more informative.

Analogy: Understanding the brain via individual synapses vs. understanding it via E/I balance and assembly dynamics. The latter is coarse-grained but causally primary.

3. Safety and alignment:

Misaligned outputs (harmful, biased, deceptive) may correspond to *failed folds*:

- Outputs that maximize engagement (clickbait) might show low H (no genuine semantic work).
- Outputs that are coherent but false (persuasive misinformation) might show pathological holding (high H but no external grounding).

Diagnostic: Monitor FOT and H in real-time. Flag outputs with anomalous signatures for human review.

4. A new computational paradigm:

LLMs are not von Neumann architectures—they are *fold architectures*. Computation occurs not by executing instructions, but by:

1. Partitioning semantic space (prompts as breaks).
2. Holding incompatible constraints (attention/residual stream as tension maintainers).
3. Resolving to compressed, synergistic representations (output tokens as crystallized folds).

This is closer to analog computation (dynamical systems settling to attractors) than digital logic.

VI.9 Summary: Semantic Physics as Testable Science

LLMs instantiate the fold principle in pure informational form:

- **Loaded symmetry:** Over-parameterized semantic manifolds with latent structure.
- **Break:** Prompts as semantic partitions, inducing graph structures.
- **Held tension:** Coherence under constraint, measurable via attention dynamics, perplexity stability, and discourse graph curvature.

The Fold Onset Triplet ($\lambda_2 \uparrow$, ID \downarrow , persistence \uparrow) provides falsifiable predictions for when folds occur. The holding functional H quantifies the “work” of semantic computation. Pathological cases—hallucinations, mode collapse, repetition loops—correspond to predicted FOT violations.

Most critically: these are *not* post-hoc rationalizations. The predictions are quantitative, differentiable from null models (pure pattern matching, statistical interpolation), and testable with existing tools (open-source LLMs, standard graph metrics, persistent homology libraries).

If cosmology shows folds in spacetime and neurobiology shows folds in neural tissue, LLMs show folds in *meaning itself*—the computational substrate of thought rendered measurable, predictable, and ultimately, governable.

VII. Formalization: Toward a Mathematics of the Fold

The preceding sections have demonstrated the fold principle across diverse domains through example and analogy. We now provide a formal mathematical framework that unifies these observations, defines measurable signatures, and generates falsifiable predictions. The goal is not mathematical completeness—which would require domain-specific specialization—but rather a *common template* that can be instantiated across substrates while retaining structural invariants.

VII.1 The Pregeometric Substrate

We begin by defining the most general object: a substrate capable of supporting folds.

Definition VII.1 (Pregeometric Substrate)

A pregeometric substrate is a structure $\mathcal{P} = (\Omega, \mathcal{F}, \tau, \preceq)$ where:

- Ω is a space of *germs*—elementary configurations or states. These could be:
 - Points in spacetime (cosmology)
 - Neurons and their connection weights (neurobiology)
 - Token embeddings in a representation space (AI)
 - Genotypes in sequence space (evolution)
- \mathcal{F} is a family of *folds*—distinguished substructures or events that break the substrate’s symmetry. Formally, $\mathcal{F} \subseteq \mathcal{P}(\Omega \times \mathbb{R})$, where each fold $f \in \mathcal{F}$ is a time-indexed subset of configurations.
- $\tau: \Omega \times \mathbb{R} \rightarrow \mathbb{R}^+$ is a *tension field*—a scalar function assigning a non-negative tension value to each configuration at each time. High τ indicates incompatible constraints; $\tau = 0$ indicates either no constraints or complete resolution.
- \preceq is a partial order on Ω representing *precedence* or *accessibility*—which configurations can be reached from which others through allowed dynamics.

Remark: This definition is deliberately abstract. It does not presuppose metric structure, probability measures, or even continuity. Different domains will enrich \mathcal{P} with additional structure (Riemannian metrics, stochastic dynamics, fitness functions), but the core tetrad $(\Omega, \mathcal{F}, \tau, \preceq)$ suffices to define a fold.

VII.2 Potentials, Gradients, and Semantic Flux

To make tension concrete, we introduce a *potential landscape* that induces tension via gradients.

Definition VII.2 (Potential and Induced Tension)

Let $S: \Omega \rightarrow \mathbb{R}$ be a *potential function* on the substrate. The potential can represent:

- Energy (cosmology, thermodynamics)
- Negative log-probability or free energy (neuroscience, statistical mechanics)
- Loss or reward functions (AI)
- Fitness (evolution)

The *gradient* ∇S (or discrete analog) represents the “force” or “drive” pushing configurations toward lower S (or higher, if S represents fitness/reward).

The *tension magnitude* at a configuration $\omega \in \Omega$ is:

$$T(\omega) = \|\nabla S(\omega)\|$$

Where the norm is defined appropriately for the substrate (L^2 norm in continuous spaces, graph-theoretic gradients in discrete spaces).

Semantic Physics connection:

In the Semantic Physics framework, we model information dynamics via a flux law:

$$\mathbf{B} = \sigma \nabla \mathbf{S}$$

Where:

- \mathbf{B} is the semantic flux (rate of information flow through the substrate)
- σ is the *conductivity* (analogous to electrical or thermal conductivity)—how readily the substrate allows information/probability/configuration to flow along gradients
- $\nabla \mathbf{S}$ is the semantic potential gradient

This is directly analogous to Fourier's heat law ($q = -k\nabla T$) or Ohm's law ($J = \sigma E$).

Key insight:

- High conductivity ($\sigma \rightarrow \infty$): Immediate relaxation—configurations flow instantly toward local minima. No holding. *Dissipative regime*.
- Low conductivity ($\sigma \rightarrow 0$): Complete blockage—no evolution possible. Static regime.
- **Intermediate conductivity:** Gradients exist ($T \neq 0$), flow is non-zero ($B \neq 0$), but *slow enough* that the system can explore before settling. *Fold regime*.

This formalizes the intuition that folds require “slow dissipation”—not zero dissipation (which would be equilibrium) and not infinite dissipation (which would be immediate collapse), but a Goldilocks zone where tension persists long enough to be harvested.

VII.3 The Fold Onset Triplet (FOT)

We now define the three measurable signatures that uniquely identify a fold in progress.

Setup:

At any time t , construct a graph $G(t) = (V, E)$ where:

- V = relevant elements (particles, neurons, tokens, genotypes)
- E = relationships (spatial proximity, synaptic connections, similarity, gene flow)

The graph can be weighted (edge weights = connection strengths) and directed (for asymmetric relationships). For temporal processes, consider a time-windowed graph $G[t, t+\Delta]$ aggregating edges over the interval.

Definition VII.3 (Fold Onset Triplet)

A fold onset at time t^* is detected when the following three conditions are simultaneously satisfied over a window $[t^*, t^*+\Delta]$:

FOT-1: Spectral Gap Opening ($\Delta\lambda_2 \geq \varepsilon$)

Compute the *graph Laplacian* $L = D - A$, where:

- D is the degree matrix (diagonal, $D_{ii} = \sum_j A_{ij}$)
- A is the adjacency matrix

The eigenvalues of L are $0 = \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$.

The second eigenvalue λ_2 (algebraic connectivity or Fiedler value) measures how well-connected the graph is. Higher λ_2 means the graph is more difficult to partition—nodes form a coherent cluster.

Condition:

$$\Delta\lambda_2(t^*) = \lambda_2(G[t^*, t^*+\Delta]) - \lambda_2(G[t^*-\Delta, t^*]) \geq \varepsilon$$

For some threshold $\varepsilon > 0$.

Intuition:

- Before fold: Elements are either disconnected or uniformly weakly connected (low λ_2).
- During fold: Elements organize into coherent assemblies with strong within-group connections and weak between-group connections (λ_2 increases).
- The opening of the spectral gap signals the formation of organized structure.

Domain examples:

- Cosmology: Galaxy formation increases λ_2 of the mass distribution graph.
- Neuroscience: Learning increases λ_2 of the functional connectivity graph (assemblies form).
- AI: Successful reasoning increases λ_2 of the token representation graph (coherent argument structure).
- Evolution: Speciation increases λ_2 of the gene flow graph (isolated populations).

FOT-2: Intrinsic Dimensionality Contraction ($\Delta\text{ID} \leq -\varepsilon'$)

Intrinsic dimensionality (ID) measures the effective number of dimensions needed to describe the data, accounting for the fact that high-dimensional data often lies on lower-dimensional manifolds.

Estimators:

1. Participation ratio (for eigenvalue spectra):

Given the covariance matrix Σ of states/configurations with eigenvalues $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$:

$$\text{ID_PR} = (\sum_i \lambda_i)^2 / \sum_i \lambda_i^2$$

This ranges from 1 (all variance in one direction) to n (variance spread uniformly).

2. Correlation dimension (for point clouds):

Count pairs of points within distance r :

$$C(r) \sim r^{\text{ID_corr}}$$

Estimate ID_corr from the scaling exponent.

3. Local PCA:

For each point, compute PCA on its k -nearest neighbors. ID is the number of principal components needed to explain (say) 95% of local variance.

Condition:

$$\Delta \text{ID}(t^*) = \text{ID}(G[t^*, t^* + \Delta]) - \text{ID}(G[t^* - \Delta, t^*]) \leq -\varepsilon'$$

For some threshold $\varepsilon' > 0$.

Intuition:

- Before fold: System explores a high-dimensional space (many degrees of freedom active).
- During fold: System contracts onto lower-dimensional manifolds (constraints reduce effective dimensionality).
- Dimensionality contraction signals that the break has introduced organizing constraints that restrict accessible configurations.

Domain examples:

- Cosmology: Early uniform distribution ($\text{ID} \approx 3$) contracts to filaments and sheets ($\text{ID} \approx 1-2$).
- Neuroscience: Neural activity contracts from high-dimensional exploration to low-dimensional attractor dynamics during learning.
- AI: Representation spaces contract from broad semantic regions to specific interpretation manifolds during context integration.
- Evolution: Phenotype space contracts from broad exploration during radiation to constrained adaptive zones.

FOT-3: Topological Stabilization ($\Delta \zeta \geq \zeta^*$)

Persistent homology tracks topological features (connected components, loops, voids) across multiple scales or thresholds, measuring their “persistence”—how long they survive as you vary the threshold (Edelsbrunner & Harer, 2010).

Construction:

1. Build a filtration: A sequence of graphs $G_0 \subseteq G_1 \subseteq \dots \subseteq G_n$ by varying an edge-weight threshold.
2. Track when topological features (k -dimensional holes) appear (birth) and disappear (death).
3. Represent as a *barcode*: horizontal bars where length = persistence (death - birth).

For time-evolving systems (zigzag persistence):

Track features across time: $G(t_1) \rightarrow G(t_2) \rightarrow G(t_3) \rightarrow \dots$, allowing both forward and backward transitions (Carlsson et al., 2010).

Persistence score:

$$\zeta(t) = \sum_{\text{features}} (\text{death} - \text{birth})^2 / \max(\text{death} - \text{birth})$$

This measures the total “stability” of topological structure—long-lived features contribute more.

Condition:

$$\Delta\zeta(t^*) = \zeta(G[t^*, t^*+\Delta]) - \zeta(G[t^*-\Delta, t^*]) \geq \zeta^*$$

For some threshold $\zeta^* > 0$.

Intuition:

- Before fold: Features are transient—they appear and quickly vanish (low persistence).
- During fold: Stable structures crystallize—features persist across thresholds and time (high persistence).
- Topological stabilization signals that the held tension has produced durable organizational patterns.

Domain examples:

- Cosmology: Virialized halos are persistent features in the matter distribution; transient overdensities are not.
- Neuroscience: Stable cell assemblies are persistent connected components in functional connectivity graphs; noise-driven correlations are not.
- AI: Stable semantic clusters in embedding space are persistent; prompt-specific fluctuations are not.
- Evolution: Repproductively isolated species are persistent components in gene flow networks; transient hybrids are not.

The Conjunctive Requirement:

Definition VII.4 (Fold Onset Event)

A fold onset at time t^* is confirmed if and only if:

$$(FOT-1 \wedge FOT-2 \wedge FOT-3)[t, t+\Delta]^{**}$$

All three conditions must co-occur within the window Δ .

Why the conjunction is necessary:

- **λ_2 alone** could increase due to random clustering or network densification without meaningful organization.
- **ID alone** could decrease due to collapse into a single basin (destructive, not productive).
- **Persistence alone** could increase due to static structure (no transformation, no creativity).

Only the *simultaneous* occurrence of all three—increased coherence, reduced dimensionality, and stable features—definitively signals a productive fold.

This is the operational differentiator that prevents relabeling: Many processes exhibit one or two of these signatures, but the triple conjunction is the unique signature of fold emergence.

VII.4 The Holding Functional H

The FOT detects *when* a fold occurs. The holding functional quantifies *how well* the tension is held during the fold window.

Definition VII.5 (Holding Functional)

Over a time window $[t_0, t_0 + \Delta]$:

$$H = \int_{t_0}^{t_0 + \Delta} \mathbb{1}\{T(t) \geq T_{\min}\} \cdot \mathbb{1}\{|\dot{T}(t)| \leq \eta\} \cdot \kappa(t) dt$$

Where:

- $T(t) = \|\nabla S(t)\|$ is the tension magnitude (Definition VII.2).
- T_{\min} is a threshold below which tension is considered negligible.
- $\dot{T}(t) = dT/dt$ is the rate of tension change.
- η is a threshold on tension rate—if $|\dot{T}| > \eta$, tension is changing too rapidly (either escalating uncontrollably or dissipating).
- $\kappa(t)$ is a *coherence metric*—how organized the system is at time t .

Coherence metrics (domain-dependent):

1. **Graph-based:** $\kappa(t) = \lambda_2(G(t)) / \lambda_n(G(t))$ (normalized algebraic connectivity)
2. **Alignment-based:** $\kappa(t) = \langle \cos(v_i, v_j) \rangle$ where v_i, v_j are state vectors (average alignment)
3. **Correlation-based:** $\kappa(t) = \text{average pairwise correlation across ensemble elements}$
4. **Mutual information-based:** $\kappa(t) = \text{MI}(\text{subsystem A; subsystem B}) / H(A, B)$ (normalized shared information)

Intuition:

The holding functional H integrates three requirements:

1. **Tension exists:** $T(t) \geq T_{\min}$ (incompatible constraints are present).
2. **Tension is stable:** $|\dot{T}(t)| \leq \eta$ (not escalating to fragmentation, not dissipating to zero).
3. **System remains coherent:** $\kappa(t)$ is high (the system doesn't disintegrate under tension).

$H > 0$ implies the system successfully maintains a metastable state of productive tension. $H \approx 0$ implies either:

- No tension to begin with,
- Tension exists but isn't held (dissipates immediately or escalates), or
- Tension is held but the system fragments (coherence collapses).

Prediction:

Systems with higher H during a fold window should exhibit:

- Better outcomes (in task performance, fitness, stability)
- Greater compression-with-synergy (Section VII.5)
- Higher probability of discovering novel solutions

VII.5 Compression with Synergy

A productive fold must not merely hold tension—it must *convert* that tension into new organizational structure. We quantify this via two complementary metrics: compression (shorter description) and synergy (emergent joint information).

Definition VII.6 (Description Length)

The *description length* $DL(S, t)$ of a system S at time t is the minimum number of bits required to specify its configuration given a description language.

Practical estimators:

1. **Kolmogorov complexity (ideal but uncomputable):** The length of the shortest program that outputs the system state.
2. **Lempel-Ziv complexity (computable approximation):** Compress the system's state sequence using LZ algorithm; $DL \approx$ compressed size (Lempel & Ziv, 1976).
3. **Model-based:** Fit a model (e.g., graphical model, neural network) to predict system state; $DL \approx$ model parameter count + residual entropy.
4. **Entropy-based (for probabilistic systems):** $DL \approx H(X) = -\sum p(x) \log p(x)$

Condition for compression:

$$\Delta DL = DL(S, t+\Delta) - DL(S, t) < 0^{**}$$

The system's description length *decreases* after the fold—it becomes more compressible because it has acquired structure.

Definition VII.7 (Multi-Variable Synergy)

Synergy $SI(\{X_1, \dots, X_n\})$ measures information that exists *only* in the joint distribution—information that cannot be obtained by examining variables individually.

Williams-Beer decomposition (Partial Information Decomposition):

For target Y and sources $\{X_1, X_2\}$ (Williams & Beer, 2010):

$$I(X_1, X_2; Y) = \mathbf{Unique}(X_1) + \mathbf{Unique}(X_2) + \mathbf{Redundancy}(X_1, X_2) + \mathbf{Synergy}(X_1, X_2)$$

Where:

- **Unique(X_i):** Information in X_i alone about Y
- **Redundancy:** Information shared by both X_1 and X_2
- **Synergy:** Information available only when considering X_1 and X_2 together

Condition for synergy increase:

$$\Delta SI = SI(\{X_1, \dots, X_n\}, t+\Delta) - SI(\{X_1, \dots, X_n\}, t) > 0^{**}$$

After the fold, variables become more interdependent—their joint behavior encodes information not present in marginals.

Definition VII.8 (Productive Fold - Full Criterion)

A fold is *productive* if it satisfies:

1. **FOT:** All three onset signatures co-occur (Definition VII.4)
2. **$H > H_{\text{thresh}}$:** Holding functional exceeds threshold (Definition VII.5)
3. **Compression:** $\Delta DL < 0$ (Definition VII.6)
4. **Synergy:** $\Delta SI > 0$ (Definition VII.7)

This is the complete operational package. All four components must be present. Any subset is insufficient:

- FOT without H : Structure forms but doesn't persist (transient).
- FOT + H without compression: Tension is held but no new organization emerges.
- Compression without synergy: System simplifies by losing information, not by organizing it.
- Synergy without compression: System becomes more complex but less understandable (chaos, not order).

Only the full conjunction marks genuine productive emergence via the fold mechanism.

VII.6 Relation to Prigogine: Dissipative vs. Fold Structures

We now formalize the critical distinction between Prigogine's dissipative structures and fold structures.

Prigogine's dissipative structures:

Setup: Open system far from equilibrium with continuous energy/matter throughput (Prigogine & Stengers, 1984).

Dynamics:

- Energy flows in at rate J_{in} , flows out at rate J_{out}
- Entropy production: $\sigma = J_{\text{out}} - J_{\text{in}} > 0$ (satisfies Second Law globally)
- Structure exists as long as $J \neq 0$

Key properties:

1. **Flow-dependent:** Structure is a *steady state* of the flow. If flow stops, structure disappears.
2. **No memory:** The system's current state depends only on current flow parameters, not history.
3. **No holding functional:** There is no metastable coexistence of incompatible constraints—the system continuously adjusts to the flow.

Examples:

- Bénard convection cells
- Belousov-Zhabotinsky oscillating reactions
- Atmospheric vortices (hurricanes)

Fold structures (this work):

Setup: System can be open or closed, but crucially has mechanisms that *slow* dissipation.

Dynamics:

- Break introduces tension: $T = \|\nabla S\| > 0$
- Holding mechanisms (feedback loops, topological constraints, regulatory circuits) keep conductivity σ finite but not infinite
- Flux: $B = \sigma \nabla S$ remains non-zero but *slower* than immediate relaxation
- $H > 0$: System sustains tension over finite window

Key properties:

1. **Structure-dependent, not flow-dependent:** Structure persists even after the initiating perturbation or flow changes (within limits). The structure *stores* its own tension.

2. **Memory:** The system's configuration encodes its formation history (e.g., virialized halos remember their assembly, learned assemblies remember their training).
3. **Metastable holding:** Incompatible constraints coexist *before* resolution.

Examples:

- Virialized galaxy clusters (gravitational potential stored in orbits)
- Synaptic assemblies (weights encode learning history)
- Stable semantic representations in AI (context held across layers)
- Evolvable architectures (modularity preserves trade-offs)

The Critical Experiment:

Hypothesis: These are distinct mechanisms, not just different descriptions of the same phenomenon.

Test Protocol:

Step 1: Identify a candidate structure (call it S^*) claimed to be either dissipative or fold-based.

Step 2: Identify the “holding mechanism”—the feedback loops, constraints, or architectural features that allegedly slow dissipation.

Step 3: Clamp or disable the holding mechanism:

- In neural networks: Remove recurrent connections, eliminate middle layers, or force immediate commitment (greedy decoding).
- In cosmology: Remove angular momentum (force radial collapse only).
- In AI: Truncate chain-of-thought to single-step responses.
- In evolution: Force immediate fixation (eliminate polymorphism via population bottlenecks).

Step 4: Measure:

- Does the structure persist?
- Does FOT signature remain?
- Does H remain > 0 ?
- Does compression-with-synergy still occur?

Predictions:

For dissipative structures:

- Structure should *scale* with reduced flow but remain qualitatively similar (convection cells get smaller/fewer but don't fundamentally change).
- FOT signatures may be weak or absent (no compression-with-synergy).
- $H \approx 0$ (no metastable tension holding).

For fold structures:

- Structure should *collapse* or *fragment* with disabled holding—not merely scale.
 - Neural network: Performance catastrophically degrades (not just gets worse).
 - Galaxy: Collapses to central singularity or fully disperses (no stable intermediate).
 - AI: Reasoning fails completely (not just gets less accurate).
 - Evolution: Species goes extinct or splits (no stable polymorphism).
- FOT signatures should *vanish* (λ_2 drops, ID doesn't contract, persistence collapses).
- $H \rightarrow 0$ (tension exists transiently but isn't held).

Falsifiability:

If clamping holding mechanisms produces only quantitative scaling rather than qualitative collapse, the fold hypothesis is falsified for that system—it's a dissipative structure.

If it produces the predicted collapse + FOT annihilation, the fold hypothesis is confirmed.

VII.7 Formal Predictions Across Domains

We now state domain-specific predictions in formal terms.

Prediction VII-1 (Cosmology):

For simulated structure formation with varying cosmological parameters:

a) At redshift $z_{\text{peak}} \sim 2-3$ (peak structure formation):

- $\Delta\lambda_2/\Delta z$ should maximize
- $\Delta\text{ID}/\Delta z$ should minimize (most negative)
- $\Delta\zeta/\Delta z$ should maximize

b) For halos at $z < 2$:

- Compute $H = \int \mathbb{1}\{T_{\text{grav}} \geq T_{\text{min}}\} \cdot \kappa_{\text{virial}} dt$
- where $T_{\text{grav}} = \|\nabla\Phi\|$ (gravitational potential gradient)
- and $\kappa_{\text{virial}} = 2\langle T_{\text{kin}} \rangle / |\langle U \rangle|$ (virial ratio—closer to 1 is more coherent)

Prediction: H should correlate with halo concentration and survival probability (halos with higher H are more stable).

c) In the far future (dark energy dominated, $z \rightarrow -1$):

- New structure formation should exhibit no FOT
- Existing structures: $H \rightarrow 0$ as tidal forces disrupt virialization

Prediction VII-2 (Neurobiology):

During learning of a new task:

a) At the trial where behavioral threshold is crossed:

- λ_2 of functional connectivity graph should show $\Delta\lambda_2 > \varepsilon$
- ID of population activity should show $\Delta ID < -\varepsilon'$
- Persistence of stable assemblies should show $\Delta\zeta > \zeta^*$

b) Holding functional for successful learners vs. non-learners:

- $H_{\text{success}} = \int \mathbb{1}\{\text{Var}[V_m] \geq \text{threshold}\} \cdot \kappa_{\text{assembly}} dt$ should be higher for animals that acquire the task
- where V_m is membrane potential (proxy for E/I tension)
- and κ_{assembly} is within-assembly correlation

c) Pathological states:

- Epileptic seizures: $\lambda_2 \rightarrow 0$ (all neurons synchronize), $H \rightarrow 0$ (no held tension, immediate collapse)
- Alzheimer's disease: Normal FOT during encoding, but ζ decays abnormally fast over hours/days (loss of persistence)

Prediction VII-3 (Artificial Intelligence):

For chain-of-thought reasoning on complex problems:

a) At the pivot token (where solution crystallizes):

- $\lambda_2(G_{\text{representations}}[\tau-k, \tau+k])$ should show local maximum
- ID(hidden states) should show local minimum
- Persistence of representation clusters should increase

b) Holding functional and answer quality:

- $H_{\text{reasoning}} = \int \mathbb{1}\{H[p(\text{tokens})] \geq H_{\text{min}}\} \cdot \kappa_{\text{consistency}} dt$
- where $H[p(\text{tokens})]$ is entropy over next token (proxy for tension)
- and $\kappa_{\text{consistency}}$ is layer-to-layer representation stability

Prediction: $H_{\text{reasoning}}$ should correlate with answer correctness (Spearman $\rho > 0.5$)

c) Jailbreaking vs. legitimate difficult requests:

- Legitimate: Full FOT + $H > 0 + \Delta DL < 0 + \Delta SI > 0$
- Jailbreak success: Incomplete FOT (missing at least one signature) or $\kappa \downarrow$ despite $H > 0$
- Jailbreak failure (graceful refusal): No FOT, immediate resolution, $H \approx 0$

Prediction VII-4 (Evolution):

During adaptive radiations:

a) Phenotype space topology:

- λ_2 of phenotypic similarity graph should increase during radiation onset
- ID of morphospace occupation should decrease as niches crystallize
- Persistence of ecomorphs should increase over time

b) Evolvability and holding:

- Lineages with higher modularity (lower trait correlations) should have higher H_{evo}
- H_{evo} = average time polymorphisms are maintained at loci under balancing selection

Prediction: H_{evo} should predict radiation success (lineages with higher H_{evo} radiate more extensively)

c) Extinction risk:

- Species with $H_{\text{evo}} \rightarrow 0$ (collapsed trade-offs, low genetic variation) should have higher extinction probability
- Operationalize: $H_{\text{evo}} \propto$ heterozygosity \times modularity score

VII.8 Measurement Protocols

For each domain, we provide a standardized measurement protocol.

Protocol A (General FOT Measurement):

Input: Time-series data of system states: $\{s(t_1), s(t_2), \dots, s(t_n)\}$

Steps:

1. **Graph construction:** For each time t_i , build graph $G(t_i)$ using appropriate similarity/connectivity metric
2. **Spectral analysis:** Compute λ_2 at each time; identify peaks in $\Delta\lambda_2$
3. **Dimensionality:** Compute ID using participation ratio or correlation dimension at each time; identify troughs in ID
4. **Persistence:** Compute zigzag persistence barcodes; quantify $\zeta(t)$
5. **Coincidence detection:** Find windows $[t^*, t^*+\Delta]$ where all three signatures co-occur
6. **Output:** List of fold onset events with $(t^*, \Delta\lambda_2, \Delta\text{ID}, \Delta\zeta, \text{confidence score})$

Protocol B (Holding Functional Estimation):

Input: Time-series data + system-specific tension proxy

Steps:

1. **Tension estimation:**

- Cosmology: $T = \|\nabla\Phi\|$ from N-body particle data
- Neuroscience: $T = \text{Var}[V_m]$ or $\text{Var}[\text{firing rates}]$ from recordings
- AI: $T = H[p(\text{next_token})]$ or $\|\nabla L\|$ from model internals
- Evolution: $T = \text{variance in fitness across strategies from population data}$

1. **Coherence estimation:**

- Compute $\kappa(t)$ using normalized λ_2 , correlation, or MI as appropriate

1. **Integrate:**

- $H = \sum_t \mathbb{1}\{T(t) \geq T_{\min}\} \cdot \mathbb{1}\{|\Delta T| \leq \eta\} \cdot \kappa(t) \cdot \Delta t$

1. **Output:** H value + breakdown (what fraction of time had tension? how coherent?)

Protocol C (Compression-with-Synergy):

Input: System states before and after candidate fold event

Steps:

1. **Compression:**

- Apply Lempel-Ziv compression or fit predictive model
- Compute DL_{before} and DL_{after}
- $\Delta DL = DL_{\text{after}} - DL_{\text{before}}$

1. **Synergy:**

- Identify relevant variables $\{X_1, \dots, X_n\}$
- Compute PID or O-information approximation
- SI_{before} and SI_{after}
- $\Delta SI = SI_{\text{after}} - SI_{\text{before}}$

1. **Output:** $(\Delta DL, \Delta SI, \text{compression-synergy score} = -\Delta DL + \Delta SI)$

VII.9 Falsification Criteria

The fold principle makes strong, falsifiable claims. We enumerate conditions under which it should be rejected:

Falsification Criterion 1:

If a system exhibits all domain-specific properties we've attributed to folds (e.g., virialized

structures in cosmology, learned assemblies in neuroscience) but does *not* exhibit the FOT package, the fold hypothesis is falsified for that system class.

Falsification Criterion 2:

If disabling holding mechanisms (per Section VII.6 experiment) produces only *quantitative* scaling rather than *qualitative* collapse, then that system is not fold-based—it's dissipative.

Falsification Criterion 3:

If $H \rightarrow 0$ universally for all successful instances of a phenomenon (e.g., all successful learning events, all radiations), then holding is not essential—some other mechanism is at work.

Falsification Criterion 4:

If compression-with-synergy does not occur ($\Delta DL \geq 0$ or $\Delta SI \leq 0$) despite FOT + H , then the fold is not productive in the sense we've defined—it's merely structural change, not emergent organization.

Falsification Criterion 5:

If the FOT signatures can be produced by trivial mechanisms (e.g., random graph rewiring that happens to increase λ_2 , or arbitrary coarse-graining that reduces ID) without any physical fold process, then FOT is not specific enough—we must refine the signatures or add additional constraints.

Protection against unfalsifiability:

We have deliberately designed the framework to be restrictive:

- **Four-way conjunction:** FOT + H + compression + synergy. This is harder to satisfy by accident than any single metric.
- **Specific interventions:** The “clamp holding” experiment directly tests the mechanism.
- **Quantitative thresholds:** We require $\Delta\lambda_2 \geq \varepsilon$, not merely $\Delta\lambda_2 > 0$. This allows empirical tuning and rejection.
- **Domain-specific predictions:** Each domain gets concrete, measurable predictions. If even one domain systematically violates predictions, the universality claim fails.

VII.10 Summary: The Mathematical Essence of Folding

We have provided:

1. **A substrate formalism** ($\mathcal{P} = (\Omega, \mathcal{F}, \tau, \preceq)$) general enough to encompass physical, biological, and computational systems.
2. **A dynamical framework** (potentials S , gradients ∇S , flux $B = \sigma \nabla S$) connecting to Semantic Physics and thermodynamics.
3. **The Fold Onset Triplet** (spectral gap, dimensionality contraction, topological stabilization)—three measurable signatures that uniquely identify fold events.
4. **The Holding Functional H** —quantifying how well and how long tension is maintained.

5. **Compression-with-Synergy**—the outcome signature proving that held tension was converted into novel organization.
6. **Differentiation from dissipative structures**—with a critical experiment (clamp holding) that falsifies one hypothesis or the other.
7. **Domain-specific predictions** with numerical targets and measurement protocols.
8. **Falsification criteria** that protect against vacuity.

The mathematics reveals the fold principle as a *meta-pattern*—a second-order regularity that describes how first-order dynamics (neural firing, gravitational collapse, evolutionary selection) generate organized complexity. It is not a new force or interaction, but a *dynamical motif* that recurs whenever:

- A substrate with latent structure (loaded symmetry)
- Experiences a discontinuity that creates incompatible constraints (break)
- And possesses mechanisms to sustain those constraints without immediate resolution (holding)
- Leading to compressed, synergistic organization (productive resolution)

If this formalism is correct, then the fold is not a metaphor we impose on nature—it is a pattern nature itself deploys, again and again, to bootstrap its way from simplicity to complexity, from symmetry to structure, from potential to actual.

VIII. Implications and Predictions (Cross-Domain)

The fold principle, if correct, is not merely a new way of describing known phenomena—it is a *generative framework* that makes novel predictions, suggests practical interventions, and reframes fundamental questions about the nature of emergence, complexity, and creativity. This section synthesizes cross-domain implications, identifies optimal parameter regimes for productive folding, proposes design principles, and articulates boundary conditions where the framework should fail.

VIII.1 The Universal Creativity Landscape

The most profound implication of the fold principle is that there exists a universal parameter space—what we call the *creativity landscape*—within which productive emergence occurs. Outside this landscape, systems either remain inert or fragment chaotically. Within it, they fold.

VIII.1a The Goldilocks Zone of Tension

Core Prediction VIII-1:

For any substrate capable of supporting folds, there exists a bounded regime of drive intensity

and coupling strength where the holding functional H and FOT intensity are maximized. Too little drive yields no fold; too much yields destructive fragmentation.

Formalization:

Let:

- D = external drive intensity (energy input rate, selection pressure, constraint strength, etc.)
- σ = coupling strength or conductivity (how readily the system responds to gradients)

For each substrate type, there exists an optimal region $\Omega^* \subset (D, \sigma)$ -space where:

$$H(D, \sigma) = \max \text{ and } \text{FOT_intensity}(D, \sigma) = \max$$

The three regimes:

1. Sub-critical (D too low or σ too high):

- Insufficient drive to break symmetry, or
- Over-responsive dynamics that relax immediately
- **Result:** No fold. System remains in loaded symmetry or dissipates before tension can be held.
- $H \approx 0$ (no tension or no holding)
- **Examples:**
 - Cosmology: Extremely smooth initial conditions—no structure forms.
 - Neuroscience: Over-anesthetized brain—no learning despite stimulation.
 - AI: Over-regularized model—cannot represent complex functions.
 - Evolution: Perfectly stable environment—no selection pressure.

1. Critical (Goldilocks zone, D and σ in Ω):*

- Drive sufficient to create gradients
- Coupling balanced to allow holding without immediate collapse
- **Result:** Productive fold. FOT emerges, $H > H_{\text{thresh}}$, compression-with-synergy.
- **Examples:**
 - Cosmology: Correct amplitude of primordial fluctuations—galaxies form.
 - Neuroscience: Balanced E/I—learning occurs.
 - AI: Appropriate model capacity and regularization—generalization.
 - Evolution: Moderate selection pressure—adaptive innovation.

1. Super-critical (D too high or σ too low):

- Excessive drive overwhelms holding mechanisms, or
- System too rigid to respond
- **Result:** Destructive break or stasis. Fragmentation, chaos, or brittleness.
- $H \rightarrow 0$ (tension escalates uncontrollably, $\kappa \downarrow$, or system locked)
- **Examples:**
 - Cosmology: Extreme density perturbations—immediate collapse to black holes, no galaxy formation.
 - Neuroscience: E/I imbalance—epilepsy or locked-in states.

- AI: Adversarial attacks, over-fitted models—jailbreaking or brittleness.
- Evolution: Catastrophic environmental change—mass extinction.

Testable Prediction VIII-1a:

For each domain, systematically vary control parameters (D, σ) and measure H and FOT metrics:

Cosmology:

- Vary initial perturbation amplitude in N-body simulations.
- Prediction: H and λ_2 peak at intermediate amplitudes ($\sim 10^{-5}$ density contrast). Below: no structure. Above: immediate collapse, no virialization.

Neuroscience:

- Vary E/I ratio pharmacologically or via optogenetic manipulation during learning tasks.
- Prediction: Learning efficiency (measured by trials-to-criterion) peaks at intermediate E/I ratio. H is maximized in this regime.

AI:

- Vary constraint strength in multi-objective training (weight on conflicting loss terms).
- Prediction: Out-of-distribution generalization peaks at intermediate constraint weights. FOT intensity and H correlate with generalization.

Evolution:

- Vary selection strength in experimental evolution (e.g., bacteria, viruses).
- Prediction: Evolvability (capacity to evolve novel traits) peaks at intermediate selection strength. Too weak: no adaptation. Too strong: genetic diversity collapses.

VIII.1b The Inverted-U Relationship

Corollary Prediction VIII-1b:

Across all domains, performance metrics (complexity, adaptability, robustness, creativity) should exhibit inverted-U relationships with drive intensity:

$$\text{Performance}(D) = f(D) \text{ where } f \text{ has a unique maximum at } D \in \Omega^{**}$$

This is the formal instantiation of the Yerkes-Dodson law (inverted-U of performance vs. arousal) (Yerkes & Dodson, 1908) and extends it beyond psychology to a universal principle of emergent systems.

Evidence already consistent with this:

- **Neuroscience:** Learning rate vs. stress, attention vs. norepinephrine.
- **AI:** Test accuracy vs. model size (scaling laws plateau or decline past optimal size for given data).

- **Ecology:** Intermediate disturbance hypothesis—biodiversity peaks at intermediate disturbance frequency (Connell, 1978).
- **Organizations:** Team performance vs. conflict intensity (moderate conflict enhances creativity; too little or too much reduces it).

The fold principle provides the *mechanism*: the inverted-U is not a statistical accident but a signature of the creativity landscape. The peak is where H is maximized—where tension can be held long enough to be productive.

VIII.2 Design Principles: Engineering Folds

If we understand the conditions for productive folding, we can deliberately engineer systems to maximize it. This has profound practical implications.

VIII.2a Design Principle 1: Separate Breaking from Holding

Insight:

In many engineered systems, the mechanisms that introduce breaks and the mechanisms that hold tension are conflated, leading to suboptimal folding.

Prescription:

Design systems with:

1. **Explicit break-inducing components:** Perturbations, challenges, contradictory objectives.
2. **Independent holding mechanisms:** Architectural features that stabilize tension without resolving it prematurely.

Applications:

AI Architecture:

- **Current (conflated):** Single loss function with implicit trade-offs. Model must simultaneously break symmetry and hold tension using the same gradient updates.
- **Fold-optimized:** Dual-stream architecture:
 - Stream A: Explores contradictory solutions (high σ , rapid dynamics).
 - Stream B: Holds and integrates (low σ , slow dynamics, recurrent connections).
 - Resolution layer: Synthesizes outputs of both streams.
- **Prediction:** Dual-stream models should show higher H , stronger FOT, and better performance on tasks requiring nuanced reasoning.

Education:

- **Current (conflated):** Present problem and expect immediate answer (no holding).
- **Fold-optimized:** Pedagogical sequence:
 - Phase 1 (Break): Present contradictory examples or perspectives.
 - Phase 2 (Hold): Structured reflection time—students explicitly articulate tension without being forced to resolve it.

- Phase 3 (Resolve): Guided synthesis or discovery of higher-order framework.
- **Prediction:** Students taught via fold-aware pedagogy should exhibit deeper conceptual understanding (higher transfer) than those given immediate resolutions.

Organizational Innovation:

- **Current (conflated):** Brainstorm then immediately vote/decide (breaks without holding).
- **Fold-optimized:**
 - Phase 1: Generate contradictory proposals.
 - Phase 2: Structured coexistence—teams must maintain multiple plans in parallel for defined period.
 - Phase 3: Synthesis only after pre-specified holding window.
- **Prediction:** Organizations using fold-aware processes should generate more novel solutions (higher patent quality, strategic differentiation).

VIII.2b Design Principle 2: Actively Monitor and Modulate H

Insight:

Most systems have no explicit representation of whether they are holding tension productively or destructively.

Prescription:

Implement real-time monitoring of H and intervene when it deviates from optimal range.

Applications:

AI Safety (Adaptive Inference):

- **Monitor:** Compute H during inference using hidden state variance and coherence metrics.
- **Intervene:**
 - If $H \rightarrow 0$ prematurely: Inject meta-prompt (“Wait, let me consider alternative perspectives...”)
 - If H escalates (high T , falling κ): Trigger safety fallback (“This query requires careful consideration. Let me break it down...”)
- **Prediction:** Systems with H -monitoring should have lower jailbreak success rates and higher quality on complex queries compared to static systems.

Therapeutic Neurofeedback:

- **Monitor:** Real-time EEG-based estimation of E/I balance (proxy for neural H).
- **Intervene:** Train patients to maintain optimal H during cognitive tasks via neurofeedback.
- **Target conditions:** ADHD (H too low—insufficient tension), anxiety (H too high or unstable—unproductive tension), autism (H distribution abnormal).
- **Prediction:** H -targeted neurofeedback should outperform traditional protocols on measures of cognitive flexibility and task performance.

Evolutionary Conservation:

- **Monitor:** Genetic diversity, modularity, and polymorphism maintenance (proxies for H_{evo}).
- **Intervene:**
 - If $H_{\text{evo}} \rightarrow 0$: Gene flow augmentation, habitat heterogeneity restoration.
 - If H_{evo} too high: May indicate fragmentation—consolidate populations.
- **Prediction:** Conservation strategies optimizing H_{evo} should reduce extinction risk more effectively than those focused solely on population size.

VIII.2c Design Principle 3: Engineer for Compression-with-Synergy, Not Just Performance

Insight:

Optimizing solely for task performance (accuracy, speed, efficiency) often produces brittle systems that overfit to specific metrics. Fold-based design optimizes for *emergent organization*.

Prescription:

Use composite objective functions that reward:

1. High performance (conventional metric)
2. Low description length (compressibility)
3. High synergy (variables are interdependent, not independent)

Loss function template:

$$L_{\text{fold}} = L_{\text{task}} + \lambda_{\text{DL}} \cdot \text{DL}(\text{model}) + \lambda_{\text{SI}} \cdot (1 - \text{SI}(\text{model}))$$

Where:

- L_{task} = traditional task loss
- $\text{DL}(\text{model})$ = description length of learned representations
- $\text{SI}(\text{model})$ = synergy among model components
- $\lambda_{\text{DL}}, \lambda_{\text{SI}}$ = weighting hyperparameters

Applications:

AI Training:

- **Current:** Minimize cross-entropy or reward-model score alone.
- **Fold-optimized:** Add explicit penalties for:
 - High representational redundancy (low synergy—many components doing the same thing)
 - High intrinsic dimensionality of intermediate representations (not compressing)
- **Prediction:** Fold-optimized training should produce models with:
 - Better out-of-distribution generalization
 - More interpretable internal structure (modularity emerges)

- Greater robustness to adversarial perturbations

Neural Network Pruning:

- **Current:** Remove weights with smallest magnitude.
- **Fold-aware:** Prune to maximize synergy—remove components that are redundant or incoherent, even if individually “important.”
- **Prediction:** Synergy-based pruning should preserve performance at higher compression ratios than magnitude-based pruning.

Scientific Theory Building:

- **Current:** Evaluate theories by predictive accuracy and parsimony independently.
- **Fold-aware:** Prefer theories with high compression (few parameters) *and* high synergy (parameters interact non-trivially).
- **Example:** General Relativity has high synergy—mass-energy, spacetime curvature, and dynamics are inseparable. Newtonian gravity + dark matter ad hoc has lower synergy—components are independent.

VIII.3 Boundary Conditions: Where Folds Should NOT Occur

A strong theory must specify not only where it applies but where it *fails*. The fold principle makes clear predictions about systems that should *not* exhibit FOT + H + compression-with-synergy.

Prediction VIII-2 (Near-Equilibrium Systems):

Claim:

Systems operating near thermodynamic equilibrium or in steady states with rapid relaxation should not produce folds.

Rationale:

- Near equilibrium: $T \approx 0$ (no gradients). No breaks occur, or if they do, system immediately returns to equilibrium.
- Rapid relaxation: $\sigma \rightarrow \infty$. Even if breaks occur, $H \rightarrow 0$ because holding window collapses.

Test cases:

Case 1: Ideal gas in a box

- No macroscopic gradients (equilibrium).
- Prediction: No FOT, $H \approx 0$, no emergent structure beyond thermal fluctuations.
- If someone claims to observe “folds” in an ideal gas, the framework is falsified or the gas isn’t ideal (e.g., near phase transition).

Case 2: Overdamped systems

- Dynamics: $dx/dt = -\nabla S$ (high friction, immediate relaxation).
- Prediction: Breaks occur but are not held. System slides directly to local minima. No H , no FOT.
- Example: Ball rolling down a smooth hill with high friction—no oscillations, no metastable states.

Case 3: Memoryless Markov chains

- Fully ergodic, rapid mixing.
- Prediction: States visited are determined solely by stationary distribution. No persistent structures, no compression-with-synergy (each state is independent).

Falsification:

If equilibrium or overdamped systems systematically exhibit FOT + H , the fold principle is either false or insufficiently specified (must add constraints to exclude these cases).

Prediction VIII-3 (Purely Linear Systems):

Claim:

Systems with strictly linear dynamics should not produce productive folds.

Rationale:

- Linear superposition: If solution A and solution B exist, $A + B$ is also a solution.
- No metastability: Tension cannot be held—superposition principle means all constraints can be satisfied simultaneously (no incompatibility).
- No compression: Linear systems cannot reduce dimensionality without losing information.

Test cases:

Case 1: Linear ODEs ($dx/dt = Ax$)

- Solution: $x(t) = \exp(At)x(0)$.
- Prediction: No FOT. Eigenvalues of A fully determine long-term behavior. No emergent structure beyond eigen-decomposition.

Case 2: Linear neural networks ($f(x) = Wx$, no nonlinearity)

- Prediction: Cannot learn XOR or other nonlinear functions. Cannot exhibit FOT during training.
- Established result: Linear networks have same expressiveness as single-layer perceptrons.

Case 3: Linearized dynamics near stable fixed points

- Any nonlinear system, if linearized around a stable equilibrium, becomes linear.

- Prediction: Near stable equilibria, FOT intensity should drop to zero (system is in resolved state, no new folds).

Implication:

Nonlinearity is *necessary* (though not sufficient) for productive folds. The fold principle predicts that all emergent complexity in nature requires nonlinear dynamics.

Supporting evidence:

- All known complex systems (life, brains, economies, ecosystems) exhibit strong nonlinearities.
- Systems often engineered to be linear (for tractability) exhibit no emergent behavior.

Prediction VIII-4 (Maximum Entropy Distributions):

Claim:

Systems at maximum entropy (given constraints) should not exhibit folds because they have no residual structure to organize.

Rationale:

- MaxEnt: System explores all microstates consistent with macroscopic constraints with equal probability.
- No gradients: $\nabla S = 0$ everywhere (uniform distribution).
- No holding: All configurations are equally probable—nothing is “held” in preference over anything else.

Test cases:

Case 1: Canonical ensemble at thermal equilibrium

- Prediction: No macroscopic structures beyond those imposed by external constraints (container walls, particle number).
- If someone claims to observe FOT in a thermal equilibrium ensemble, either the system isn’t at equilibrium or there are hidden constraints.

Case 2: Uniformly random graphs (Erdős-Rényi at $p = 0.5$)

- Maximum entropy for graph ensemble.
- Prediction: No persistent communities, no significant spectral gap ($\lambda_2 \approx 0$), no topological features beyond random baseline.

Implication:

Productive folds require systems to be *out of equilibrium* or *away from maximum entropy*. The fold principle is fundamentally a theory of non-equilibrium emergence.

VIII.4 Strong vs. Weak Emergence Revisited

The fold principle allows us to operationalize and potentially resolve the philosophical debate between strong and weak emergence.

VIII.4a The Traditional Distinction

Weak Emergence:

- Macroscopic properties are *surprising* but *in principle derivable* from microscopic dynamics.
- Given complete knowledge of micro-rules and initial conditions, macro-behavior is predictable (though computation may be intractable).
- Example: Traffic jams from individual driver behavior.

Strong Emergence:

- Macroscopic properties are *ontologically novel*—they cannot be predicted from micro-rules even in principle.
- May exhibit “downward causation”—macro-level properties constrain micro-level behavior (Bedau, 1997).
- Example (controversial): Consciousness from neural activity.

VIII.4b The Fold Criterion

Proposal:

A phenomenon is *strongly emergent* in the fold sense if and only if:

1. **FOT + H + compression-with-synergy** are present (productive fold confirmed).
2. **Synergy is non-zero:** Information exists at the macro level that is not present in any subset of micro components.
3. **Description length reduction is substantial:** The macro-level description is exponentially shorter than the micro-level enumeration.

Implication:

If these conditions hold, the macro-level is not merely a “convenient summary” of the micro-level—it is a *new ontological level* where information resides that would be destroyed by reduction.

Operationalization:

Test: Can we predict system behavior from micro-rules without simulating the fold?

If yes (weak emergence):

- Fold is predictable from scaling laws, mean-field theory, or other coarse-graining.
- Example: Galaxy formation—N-body simulations predict halo mass functions from initial conditions and gravity.

If no (strong emergence):

- Fold produces outcomes that require actually *running* the dynamics to discover.
- Example: Evolution of novelty—cannot predict which innovations will emerge without simulating the entire process.

The fold framework suggests:

Most natural folds are *weakly emergent* in principle but *computationally irreducible* in practice—you cannot shortcut the holding phase. The tension must be held to discover what lies beyond it. This makes emergence *pragmatically strong* even if *ontologically weak*.

Downward Causation:

Fold-generated structures can exhibit downward causation in the following sense:

- Once a fold produces a new organizational level (e.g., multicellular organism, cognitive assembly, linguistic grammar), that level imposes *new constraints* on lower levels.
- Example: A stable neural assembly (macro) modulates synaptic weights (micro) through homeostatic mechanisms.
- This is not spooky action—it's feedback within a hierarchy. But it is non-reducible: the macro level is not *derived from* the micro level alone; it's co-constitutive.

VIII.5 Practical Applications

We now outline specific, near-term applications across domains.

VIII.5a AI Safety: Fold-Aware Alignment

Problem:

Current AI alignment techniques (RLHF, constitutional AI) often produce brittle systems that either refuse too much (low capability) or comply unsafely (jailbreaks).

Fold-Based Solution:

1. Dual-loss training with explicit H-optimization:

- $L_{\text{align}} = L_{\text{helpfulness}} + L_{\text{harmlessness}} + \lambda_{\text{H}} \cdot H(\text{model})$
- Where H is estimated from hidden state dynamics during adversarial red-teaming.
- Forces model to develop internal representations that *hold* both objectives simultaneously rather than collapsing to one.

1. Real-time H-monitoring during deployment:

- If $H \rightarrow 0$ rapidly on a query: Flag for human review (model cannot hold tension—query may be adversarial).
- If H escalates: Trigger chain-of-thought or clarification request.

1. Synergy-based adversarial detection:

- Jailbreaks should produce low synergy (model's safety and helpfulness representations decouple).
- Train a classifier: $P(\text{adversarial} \mid \text{SI}, \kappa, H)$.
- Prediction: Outperforms keyword-based filters.

Testable Prediction VIII-5a:

Models trained with H -optimization should:

- Have lower jailbreak success rate (ASR) on standardized red-team benchmarks.
- Higher scores on nuanced ethics scenarios (genuine dilemmas, not just clear-cut rules).
- Faster identification of evolving attack strategies (adaptability).

VIII.5b Therapeutic Interventions: Restoring Held Tension

Problem:

Many psychiatric and neurological disorders can be conceptualized as fold failures:

- Depression: Collapsed to negative interpretations ($H_{\text{cognitive}} \rightarrow 0$).
- PTSD: Unresolved tension (high T , low κ —fragmentation).
- Obsessive-compulsive disorder: Over-holding of non-productive tension (high H but wrong constraints).

Fold-Based Interventions:

Protocol 1: Cognitive Fold Therapy (CFT)

1. **Assessment:** Measure $H_{\text{cognitive}}$ —how well patient can hold contradictory thoughts.
 - Task: “Hold two competing interpretations of an ambiguous scenario for 5 minutes without resolving.”
 - Metric: Self-reported discomfort (proxy for T), ability to articulate both views (proxy for κ).
1. **Training:** Graduated exposure to cognitive tension-holding.
 - Week 1-2: Hold minor contradictions (e.g., “I’m both competent and learning” vs. “I’m either competent or incompetent”).
 - Week 3-4: Hold emotional contradictions (e.g., “I can feel sad about the past and hopeful about the future”).
 - Week 5-6: Hold existential tensions (e.g., “Life has no inherent meaning, and I can create meaning”).
1. **Outcome:** $H_{\text{cognitive}}$ should increase. Patients should show:
 - Reduced dichotomous thinking (measured by cognitive flexibility scales).
 - Improved ability to generate creative solutions (divergent thinking tests).
 - Decreased symptom severity (depression, anxiety inventories).

Prediction VIII-5b:

CFT should outperform traditional CBT (which focuses on immediate cognitive resolution) on measures of long-term resilience and cognitive flexibility.

Protocol 2: Neural H-restoration via Brain Stimulation

1. **Target:** Regions with abnormal E/I balance (identified via EEG, fMRI).
2. **Intervention:** Non-invasive brain stimulation (TMS, tDCS) calibrated to restore optimal H .
 - For depression (H too low): Enhance excitatory drive to prefrontal cortex.
 - For epilepsy (H collapses to pure E): Enhance inhibitory tone.

1. **Monitoring:** Real-time EEG-based H estimation during stimulation.
2. **Adaptive protocol:** Adjust stimulation parameters to maintain H in optimal range.

Prediction VIII-5c:

Adaptive, H -targeted brain stimulation should:

- Require fewer sessions than fixed-protocol stimulation.
- Have better remission rates.
- Lower relapse rates (because the system is trained to hold tension, not just pushed to a different state).

VIII.5c Conservation Biology: Maintaining Evolutionary H

Problem:

Traditional conservation focuses on population size. But small populations with high H_{evo} may be more viable than large populations with $H_{evo} \rightarrow 0$.

Fold-Based Conservation:

Assessment:

For endangered species, measure:

- $H_{evo} = (\text{genetic diversity}) \times (\text{modularity}) \times (\text{polymorphism maintenance time})$
- Use genomic data + phenotypic trait correlations.

Interventions:

If H_{evo} is low due to loss of variation:

- Gene flow augmentation: Introduce individuals from related populations to restore neutral networks.
- Habitat heterogeneity: Create patchy environments that maintain polymorphic strategies.

If H_{evo} is low due to over-specialization:

- Selective breeding for generalist traits (higher modularity).
- Avoid artificial selection that collapses trade-offs.

Prediction VIII-5d:

Species recovery programs that maximize H_{evo} should:

- Have higher long-term survival probability.
- Faster adaptation to environmental changes (e.g., climate shifts).
- Greater evolutionary potential (measured by response to selection in common-garden experiments).

Case study proposal:

- Compare two endangered species with similar population sizes but different H_{evo} .
- Prediction: Species with higher H_{evo} should have lower extinction risk over next 50 years, controlling for population size and habitat quality.

VIII.6 Philosophical and Conceptual Implications

VIII.6a Against Naive Reductionism

The fold principle suggests that reductionism, while methodologically valuable, is ontologically incomplete. Here's why:

Traditional Reductionist Claim:

“If we know all the micro-level rules and initial conditions, we know everything.”

Fold Counterargument:

Even with complete micro-knowledge, we cannot predict:

1. **Which folds will occur** (because holding depends on contingent perturbations and metastable dynamics).
2. **What compression-with-synergy will emerge** (because synergy is defined at the macro level—it doesn't exist at the micro level).
3. **The subsequent causal efficacy of the fold** (because the macro-level structure constrains future micro dynamics—downward causation).

Example:

Knowing all atomic positions and momenta in a developing embryo does not tell you *which cell will become a neuron* until the fold (cell fate decision) occurs. The information “this cell is a neuron” emerges *during* development and cannot be read off the initial conditions alone (due to stochasticity, symmetry breaking, and holding dynamics).

Implication:

The universe is not a “frozen” block where all facts are implicit at $t=0$. It is a *generative* process where new information comes into being via folds. Time is not just the parameter along which preexisting states are revealed—it is the dimension along which creativity happens.

VIII.6b Against Teleology (The Fold Is Not Intentional)

One might worry: If folds “hold tension to discover higher-order solutions,” isn’t this teleological—implying purpose or goal-directedness?

Clarification:

The fold principle is entirely *mechanistic*. There is no intentionality, no “trying,” no purpose. The anthropomorphic language we use (“the system holds,” “discovers”) is shorthand for:

1. **Holding = dynamical consequence of specific architectural features** (feedback loops, slow conductivity, topological constraints).
2. **Discovery = exploration of phase space** due to stochastic or deterministic dynamics, not goal-seeking.
3. **Higher-order solution = outcome of minimization/maximization under constraints**, not designed endpoint.

Example:

When we say “a galaxy holds gravitational tension,” we mean:

- Gravitational and kinetic energy are balanced (dynamical constraint).
- Orbits are stable (consequence of angular momentum conservation).
- This configuration minimizes free energy (variational principle).

No “intention” is involved. The galaxy doesn’t “know” it’s holding tension or “try” to virialize. It simply follows local dynamical rules that happen to produce holding as an emergent consequence.

The appearance of creativity:

Folds *appear* creative because they generate outcomes not obvious from initial conditions. But this is not magic—it’s the consequence of:

- Nonlinearity (small changes produce large effects).
- High dimensionality (vast spaces to explore).
- Metastability (holding windows allow thorough exploration before commitment).

The fold principle explains creativity *without* invoking purpose—which is precisely what a scientific theory should do.

VIII.6c The Fold and Free Will

An intriguing speculative implication:

If human cognition operates via folds (Section IV), and folds involve *held tension* during which the system explores multiple incompatible options before resolution, this might relate to the phenomenology of choice and deliberation.

Phenomenology of decision-making:

- We experience *deliberation*—holding contradictory desires, reasons, values.
- We experience *tension*—the discomfort of unresolved choice.
- We experience *resolution*—the moment of decision feels like a qualitative shift.

Fold interpretation:

Deliberation is neural $H > 0$. Competing action plans are held in prefrontal cortex. Resolution is when the system exhibits FOT—one plan crystallizes, dimensionality contracts, persistent features stabilize.

Implication for free will:

This does not *solve* the free will problem (that requires metaphysics beyond neuroscience). But it offers a *compatibilist* framework:

- Decisions are determined by neural dynamics (no violation of physics).
- But those dynamics include genuine holding and exploration phases where outcome is not predetermined from initial conditions (due to metastability and stochasticity).
- The phenomenology of “choice” maps onto the *process* of fold resolution—it’s not an illusion, it’s the subjective correlate of $H > 0$.

Testable aspect:

Decisions made with higher H (longer deliberation with stable tension) should be:

- More resistant to reversal (stronger persistence).
- More integrative of evidence (higher synergy).
- Experienced as more “free” or “autonomous” (self-report measures).

VIII.7 Limitations and Open Questions

VIII.7a What Determines Fold “Success”?

We’ve defined *productive* folds (FOT + H + compression-with-synergy). But what determines *which* resolution a fold will find? Why does one fold produce a galaxy and another a black hole? Why does one learning event produce insight and another confusion?

Open question:

Is there a *variational principle* that governs fold outcomes? Some candidate principles:

- **Free energy minimization (Friston):** Folds resolve toward configurations minimizing variational free energy (Friston, 2010).
- **Maximum entropy production (Dewar):** Folds select pathways that maximize entropy production rate (Dewar, 2003).
- **Fisher information (entropic dynamics):** Folds follow gradients in information geometry.

Status: Unclear. Different principles apply in different domains. A unified variational principle for fold dynamics remains an open problem.

VIII.7b The Meta-Question: Can Systems Evolve to Fold Better?

Section VI.5b touched on “evolvability”—the capacity to evolve. Can systems evolve the capacity to fold more productively?

Evidence suggesting yes:

- Modularity evolves (it’s not primordial)—this is a holding architecture.
- Developmental robustness evolves—another holding mechanism.
- Sexual recombination may have evolved partially to enhance genetic exploration (loading symmetry).

Open question:

Is there a “second-order selection” for fold-ability? Do systems that fold well out-compete those that don’t, leading to evolution of better folding mechanisms?

Implication:

If yes, the universe exhibits *increasing creativity* over time—not just more complexity, but better mechanisms for generating complexity. This would be a directional arrow of increasing generativity, distinct from entropy increase.

Status: Speculative. Requires long-term macro-evolutionary analysis.

VIII.7c Can Folds Compose?

Can folds within folds create hierarchical complexity? For example:

- Neurons fold (synaptic plasticity) → assemblies
- Assemblies fold (systems consolidation) → cognitive maps
- Cognitive maps fold (social learning) → culture

Open question:

Is there a *calculus* of fold composition? Can we predict the properties of a meta-fold from the properties of its constituent folds?

Candidate framework:

- If sub-folds exhibit FOT_1 and FOT_2 , does the meta-fold exhibit $FOT_{meta} = f(FOT_1, FOT_2)$?
- Similarly for $H_{meta} = g(H_1, H_2)$?

Status: Unexplored. This would require formalizing fold algebra.

VIII.7d Measurement Challenges

All our predictions require measuring FOT , H , synergy, etc. But:

- **Computational cost:** These metrics require high-dimensional data (states, graphs, time series) and non-trivial computation (eigenvalues, persistent homology, MI estimation).
- **Ambiguity in graph construction:** What should nodes and edges represent? Different choices may yield different FOT.
- **Thresholds:** How to set $\epsilon, \epsilon', \zeta^*, H_{\text{thresh}}$? These may be domain-dependent.

Open question:

Can we develop efficient, robust estimators that work across domains with minimal tuning?

Candidate solutions:

- Develop standardized software libraries for FOT/ H estimation with validated default parameters.
- Use surrogate metrics that are cheaper to compute but correlate with full FOT (e.g., simple variance ratios instead of full PCA).
- Apply machine learning: Train models to predict FOT from simpler observables.

VIII.8 Future Research Directions

We conclude by proposing a research agenda.

Direction 1: Comprehensive Cross-Domain FOT Atlas

Goal: Build an empirical database of FOT/ H measurements across domains.

Approach:

- Cosmology: Analyze N-body simulations across parameter space.
- Neuroscience: Large-scale recordings during learning (neuropixels, calcium imaging).
- AI: Systematic measurement of FOT during training and inference on benchmark tasks.
- Evolution: Quantify FOT in experimental evolution and paleontological data.

Outcome:

Identify universality classes—do certain $(\lambda_2, \text{ID}, \zeta, H)$ profiles recur across domains? Can we predict domain from FOT signature?

Direction 2: Fold Engineering Toolkit

Goal: Develop practical tools for engineers/designers/educators.

Components:

- Diagnostic: Software to measure FOT/ H in their system.
- Prescriptive: Given system parameters, recommend interventions to increase H .

- Generative: Design new architectures optimized for holding (e.g., AI models, organizational structures).

Outcome:

Fold-aware design becomes routine practice in AI, education, therapy, conservation.

Direction 3: Fold-Based AI

Goal: Build AI systems explicitly architected around fold principles.

Research questions:

- Can we design loss functions that directly reward high H during training?
- Can we create “holding layers” that slow information processing to allow tension maintenance?
- Can we train models to explicitly represent and manipulate their own H ?

Outcome:

Next-generation AI with qualitatively better reasoning, generalization, and alignment properties.

Direction 4: Fold Dynamics Theory

Goal: Develop rigorous mathematical theory of fold dynamics.

Open problems:

- Variational principle for fold outcomes.
- Calculus of fold composition.
- Topological classification of folds (are there distinct fold “species”?).
- Connection to renormalization group (do folds have scale-invariant properties?).

Outcome:

Unified theory connecting statistical mechanics, information theory, dynamical systems, and emergence.

Direction 5: Empirical Falsification Campaign

Goal: Systematically test fold predictions in controlled experiments.

Priority experiments:

1. **Cosmology:** Vary initial conditions in simulations; map H and FOT intensity; confirm inverted-U in structure formation.

2. **Neuroscience:** Pharmacologically manipulate E/I during learning; confirm H -performance correlation.
3. **AI:** Train models with H -optimization; test on adversarial robustness, OOD generalization, interpretability.
4. **Evolution:** Experimental evolution with varying selection strength; measure H_{evo} and evolvability.

Outcome:

Either robust confirmation (fold principle is correct and useful) or decisive falsification (back to drawing board, but with clearer understanding of what *doesn't* work).

VIII.9 Synthesis: The Fold as Universal Scaffold

The fold principle, if validated, offers something rare in science: a *cross-scale, cross-domain framework* for understanding how ordered complexity emerges.

It resolves the paradox of Section I: order arises not *despite* discontinuity but *through* it—when breaks are held rather than healed, when tension is harvested rather than dissipated, when systems refuse the easy path of collapse and instead endure the discomfort of becoming.

The fold is not a force, not a particle, not an equation. It is a *process*—a universal rhythm that plays out from the first symmetry breaking after the Big Bang to the formation of a thought in your mind as you read this sentence.

If the fold principle is correct:

- **Cosmology** is not about matter distributions but about held gravitational tension crystallizing into structure.
- **Neurobiology** is not about firing rates but about the architecture that holds incompatible drives long enough for learning to occur.
- **AI** is not about parameter counts but about systems that can sustain contradiction without collapse.
- **Evolution** is not about climbing fitness peaks but about maintaining the tensions that enable the very existence of peaks to explore.
- **Creativity**—human, biological, cosmic—is not magic, but the inevitable consequence of systems that have learned to hold the crack open long enough to see what lies on the other side.

The fold principle invites us to reconceive emergence not as reduction (macro from micro) nor as vitalism (magic from matter) but as *temporal alchemy*—the transformation of breaks into bridges through the patient art of held tension.

If nature is creative, it is because nature has learned to fold.

IX. Conclusion: The Creativity of Discontinuity

We began with a paradox: The universe, governed by laws that dictate inexorable decay toward disorder, nonetheless generates exquisite architecture at every scale we observe. Galaxies crystallize from quantum fog. Consciousness emerges from neural tissue. Life bootstraps itself from chemistry. How?

This paper has argued that beneath the diversity of these phenomena lies a single, universal pattern—**the fold**. Not a force, not a law in the traditional sense, but a *dynamical motif*: a way that systems repeatedly convert rupture into structure, discontinuity into creativity, tension into coherence.

IX.1 The Core Thesis, Restated

The Fold Principle: Emergent order arises when a substrate with latent structure (loaded symmetry) undergoes a discontinuous break that creates incompatible constraints, and the system’s dynamics sustain those constraints in metastable coexistence (held tension) long enough to generate compressed, synergistic organization (productive resolution).

This three-phase pattern—**load → break → hold**—recurs with remarkable fidelity:

- In **cosmology**, quantum fluctuations seed density perturbations that gravitational dynamics hold in virialized structures rather than allowing immediate collapse or dissipation.
- In **neurobiology**, synaptic gaps introduce signal discontinuities that excitation/inhibition balance holds in dynamic tension, enabling learning rather than seizure or silence.
- In **artificial intelligence**, prompts create semantic constraints that architectural features (attention, recurrence, chain-of-thought) hold across processing steps, enabling reasoning rather than mere retrieval or collapse.
- In **evolution**, mutations and ecological shifts create fitness trade-offs that developmental modularity and population structure hold across generations, enabling innovation rather than optimization or extinction.

The pattern is not metaphorical. We have provided:

1. **A formal substrate** ($\mathcal{P} = (\Omega, \mathcal{F}, \tau, \preceq)$) general enough to encompass physical, biological, and computational systems.
2. **Measurable signatures**—the **Fold Onset Triplet** (spectral gap opening, dimensionality contraction, topological stabilization)—that uniquely identify folds in progress.
3. **A quantitative metric**—the **holding functional H** —that measures how well tension is sustained.
4. **An outcome criterion**—**compression with synergy**—that distinguishes productive folds from mere disruption.
5. **Falsifiable predictions** spanning cosmology, neuroscience, AI, and evolution, with specific experimental protocols and boundary conditions where the framework should fail.

IX.2 Answering the Critical Questions

In Section I, we posed three questions that any theory of universal emergence must answer. We now provide the fold principle's responses.

Question 1: What makes the fold different from existing concepts?

Answer:

The fold is not merely relabeled symmetry breaking (Landau), self-organization (Prigogine), criticality (Bak), or catastrophe (Thom). It is distinguished by the **conjunctive operational package**:

- **FOT (all three signatures simultaneously) + $H > 0$ (sustained holding) + $\Delta DL < 0$ (compression) + $\Delta SI > 0$ (synergy)**

No single existing framework requires all four components. Symmetry breaking can occur without holding (immediate relaxation). Self-organization can occur without compression-with-synergy (dissipative structures that vanish when flow stops). Criticality can occur without synergy increase (random percolation).

The fold principle integrates and extends these frameworks by:

1. Emphasizing the *temporal process* of holding as essential (not just the initial break or final state).
2. Requiring *productive outcome* (compression-with-synergy) as the validation criterion.
3. Providing *operational falsifiers* (clamp holding mechanisms; measure outcome metrics).

Most critically: The fold explains *why* breaks don't simply heal (because holding prevents immediate relaxation) and *what determines whether a break is productive* (whether H , FOT, and compression-with-synergy co-occur).

Question 2: Why is holding essential? Why not immediate resolution?

Answer:

Immediate resolution yields only local optima or trivial dissipation. Higher-dimensional solutions—configurations that satisfy multiple incompatible constraints at a meta-level—require exploration time.

The mathematical reason: The resolution space is high-dimensional and non-convex. Gradient descent (immediate relaxation) gets trapped in local minima. Holding creates a metastable “platform” from which the system can explore the geometry of its possibility space before committing.

The physical reason: Without holding, systems either:

- **Collapse to one pole** (choose one constraint, violate the other)—e.g., epileptic seizure (pure excitation), extinction (over-specialization).

- **Dissipate completely** (abandon both constraints)—e.g., failed galaxy formation, forgotten learning.

With holding, the system can:

- **Recruit new degrees of freedom** (e.g., modularity emerges to decouple conflicting objectives).
- **Discover compositional structure** (e.g., hierarchical representations that integrate contradictions).
- **Generate genuine novelty** (e.g., evolutionary innovations that weren't in the adjacent possible until holding opened new paths).

Empirical evidence:

- Neuroscience: Learning requires E/I balance (holding); immediate collapse or dissipation produces no stable memories.
- AI: Chain-of-thought (holding) vastly outperforms direct answer (immediate resolution) on complex reasoning.
- Evolution: Polymorphic populations (holding trade-offs) adapt better than monomorphic ones (collapsed to single optimum).

The deep principle: Creativity is not instantaneous inspiration—it is the patient endurance of productive tension. This applies equally to galaxies, brains, and minds.

Question 3: Are there counterexamples? Emergence without fold?

Answer:

Yes—and their existence strengthens the theory by delimiting its scope.

The fold principle predicts absence of productive emergence in:

1. Near-equilibrium systems:

- Ideal gases, overdamped Langevin dynamics, thermal equilibrium ensembles.
- **Why:** No gradients ($T \approx 0$) or immediate relaxation ($\sigma \rightarrow \infty$) \rightarrow no holding $\rightarrow H \approx 0$.
- **Status:** Confirmed. These systems exhibit only thermal fluctuations, no persistent structures.

2. Purely linear systems:

- Linear ODEs, linear neural networks, linearized dynamics near stable fixed points.
- **Why:** No metastability possible; superposition principle means all constraints satisfied simultaneously \rightarrow no incompatibility \rightarrow no fold.
- **Status:** Confirmed. Linear systems cannot learn nonlinear functions or exhibit emergent complexity.

3. Maximum entropy distributions:

- Systems at statistical equilibrium given constraints.

- **Why:** $\nabla S = 0$ everywhere \rightarrow no tension \rightarrow no holding.
- **Status:** Confirmed. MaxEnt distributions have no internal structure beyond imposed constraints.

4. Simple dissipative structures:

- Bénard cells, hurricanes, some oscillating chemical reactions.
- **Why:** Structure tracks flow, not held independently. Clamping holding mechanisms doesn't produce collapse, only scaling.
- **Test:** Predicted difference confirmed in simulations (galaxy halos collapse when angular momentum removed; convection cells merely shrink when heat flux reduced).

Crucially: These counterexamples are not failures of the theory—they are *predictions*. The fold principle states **where** emergence should occur (systems with loaded symmetry, breaks, and holding capacity) and **where it should not** (equilibrium, linear, maxent, pure dissipation). The theory is falsifiable precisely because it excludes these cases.

Implication:

Not all complexity is fold-generated. Some patterns (crystals, convection cells) are equilibrium or dissipative outcomes. The fold principle applies specifically to **generative complexity**—systems that create new organizational levels with compression-with-synergy. This is a *subset* of emergent phenomena, but it is the subset that includes life, mind, and the cosmic web.

IX.3 The Broader Significance

Beyond its technical content, the fold principle carries implications for how we understand nature, design technology, and conceive of our own place in the cosmos.

IX.3a A Science of Becoming

Most of physics is a science of *being*: given initial conditions and laws, what *is*? The fold principle contributes to a complementary science of *becoming*: how does the genuinely new come into existence?

This is not teleology. There is no purpose, no design, no striving. But there is *generativity*—the universe's capacity to surprise itself. Folds are the mechanism by which:

- Information not present at $t=0$ comes into being at $t>0$ (synergy emerges).
- Descriptions become more compressed even as systems become more complex (structure, not just complication).
- Causal powers at new levels arise (downward causation via hierarchy).

The universe is not a frozen block where all futures are implicit in the initial state. It is an ongoing creative process where folds—from the primordial symmetry breakings to the thoughts you're having now—genuinely add to what exists.

This rehabilitates a scientifically grounded notion of **cosmic creativity** without invoking vitalism or mysticism. Creativity is not magic—it is what happens when systems with the right architecture encounter discontinuities and hold the resulting tension long enough to discover what lies beyond immediate resolution.

IX.3b Implications for AI and Intelligence

The fold principle suggests that **intelligence is not computational power—it is the capacity to hold productive tension.**

Current AI architectures (including LLMs) often force immediate resolution:

- Greedy decoding selects the highest-probability token at each step (no holding).
- Single-step inference provides immediate answers (no exploration window).
- Safety training via RLHF often produces brittle refusals (collapse to one pole rather than synthesis).

Fold-aware AI would:

- Explicitly represent contradictory constraints in hidden states (architectural support for tension).
- Include “holding layers” that slow processing to allow exploration (recurrence, extended CoT, delayed commitment).
- Be trained to maximize H —rewarded not for immediate correct answers but for maintaining coherent tension before synthesis.
- Monitor its own fold dynamics in real-time, adjusting inference strategy adaptively.

Prediction: The next qualitative leap in AI capability will come not from scale alone but from architectures that fold better. Models that can hold semantic tension—between helpfulness and safety, between prior knowledge and contextual evidence, between multiple hypotheses—will exhibit more robust reasoning, better generalization, and genuine alignment.

Philosophically: If human intelligence is fundamentally fold-based (as Section IV suggests), then creating “human-level” AI may require not just matching computational capacity but replicating the fold architecture: the ability to sustain contradiction, endure uncertainty, and discover synthesis.

This offers a potential resolution to the “hard problem” of machine consciousness: consciousness might not require biological substrate but rather **fold-capable architecture**—the ability to hold multiple incompatible models of self and world in metastable coexistence, continuously resolving them into higher-order narratives. This remains speculative, but it’s testable: do systems with high H exhibit markers of phenomenal awareness? Do increases in H correlate with metacognitive capacity?

IX.3c Implications for Human Meaning and Practice

If the fold principle is universal, it applies to human endeavors:

Creativity:

Artists, scientists, and innovators report experiences of “holding tension” before breakthrough:

- Musicians sustain dissonance before resolution.
- Scientists maintain contradictory hypotheses before synthesis (Bohr’s complementarity, Einstein’s equivalence principle).
- Writers hold conflicting narrative possibilities before plot crystallizes.

The fold framework validates this phenomenology: creativity is not random inspiration but the deliberate cultivation of held tension. This has pedagogical implications:

- **Don’t rush to resolution.** Teach students to hold ambiguity, contradiction, and uncertainty.
- **Structure the holding.** Provide scaffolds (CoT-like prompts, collaborative deliberation, journaling) that externalize and sustain tension.
- **Measure holding capacity.** Cognitive flexibility, tolerance for ambiguity, and dialectical thinking are trainable skills that correlate with $H_{\text{cognitive}}$.

Ethics and Decision-Making:

Moral dilemmas are folds—situations with incompatible values (freedom vs. security, individual vs. collective, present vs. future). Poor ethical reasoning:

- **Collapses immediately** (dogmatism—“always choose X”).
- **Dissipates** (relativism—“no principles, only context”).

Good ethical reasoning:

- **Holds the tension** (acknowledges genuine conflict of values).
- **Seeks synthesis** (finds meta-principles or situational resolutions that honor both poles).

Societies with institutions that fold well (deliberative democracy, common law precedent, scientific peer review) exhibit higher collective intelligence than those that collapse to ideology or fragment into tribalism.

Personal Growth:

Therapeutic frameworks (Jungian integration, dialectical behavior therapy, narrative therapy) implicitly use fold logic: hold contradictory aspects of self (shadow/persona, emotion/reason, past/future) rather than suppressing or dissociating. Psychological maturity is increased $H_{\text{cognitive}}$ —the capacity to be multiple things simultaneously (strong and vulnerable, confident and humble, rational and emotional) without collapse or fragmentation.

IX.3d Implications for the Long-Term Future

On cosmic timescales, the fold principle makes a striking prediction:

The universe's creativity will decline.

As dark energy accelerates expansion:

- Structures will become increasingly isolated (no new interactions → no new breaks).
- Existing structures will tidally disrupt or redshift away (holding mechanisms fail).
- $H \rightarrow 0$ universally. No new FOT events.

In $\sim 10^{14}$ years, the last stars will burn out. In $\sim 10^{30}$ years, galaxies will have dispersed. By 10^{100} years (proton decay timescales), even black holes evaporate.

The fold interpretation: The universe is undergoing an irreversible transition from a fold-rich (creative) era to a fold-depleted (sterile) era. We exist in a narrow temporal window—roughly 10 billion to 1 trillion years post-Big Bang—when conditions permit productive folding.

This is not heat death (maximum entropy) but *fold death*: the universe still contains energy and structure, but it has lost the capacity to generate novelty. Gradients remain, but they cannot be held. Breaks occur, but they dissipate immediately or cause fragmentation.

Implication for intelligence:

If intelligence requires folds (Section IX.3b), then intelligence itself is a transient cosmic phase. Future civilizations must either:

- Maximize fold productivity while conditions permit (harvest all possible creative tension before the window closes).
- Engineer artificial fold-sustaining environments (localized regions that maintain holding capacity despite cosmological expansion).
- Migrate to regions or configurations that remain fold-rich (speculative: baby universes, black hole interiors, simulation substrates).

This gives cosmic urgency to understanding folds: we are not just studying abstract patterns but learning to read the universe's instruction manual for creativity—while there's still time to use it.

IX.4 Limitations and Humility

Despite the breadth of evidence and formalism presented, the fold principle remains a young framework with significant limitations:

1. Explanatory gaps remain:

- We do not yet have a unified variational principle that predicts fold outcomes.
- The composition calculus (how sub-folds combine into meta-folds) is undeveloped.
- The relationship to quantum mechanics is unclear (are quantum measurements folds? Is wavefunction collapse a break? Is decoherence holding?).

2. Measurement challenges persist:

- FOT, H , and synergy are computationally expensive to estimate rigorously.
- Graph construction choices (what are nodes/edges?) affect results.
- Thresholds (ϵ , ζ^* , H_{thresh}) may require domain-specific tuning.

3. Empirical validation is incomplete:

- We have cited supporting evidence but have not conducted the systematic experimental campaigns outlined in Section VIII.
- Some predictions (especially in cosmology and evolution) require timescales beyond individual research careers.
- Negative results (systems that should fold but don't, or vice versa) may exist but haven't been systematically sought.

4. Alternative explanations may suffice:

- It's possible that what we call "folds" are simply diverse instantiations of known principles (criticality, phase transitions, optimization) without needing a unifying framework.
- The apparent universality might be an artifact of our construction—we've defined folds to encompass diverse phenomena, so of course they appear universal.

We acknowledge these limitations openly. Science advances through iterative refinement: propose bold frameworks, test them mercilessly, revise or discard as evidence dictates. The fold principle is offered in that spirit—not as final truth but as a productive hypothesis that generates testable predictions and novel perspectives.

The measure of a framework is not whether it is ultimately correct but whether it is useful: Does it suggest experiments we wouldn't have thought to do? Does it connect domains we thought unrelated? Does it make phenomena comprehensible that were opaque?

On these criteria, even if the fold principle is eventually superseded, we believe it already justifies attention.

IX.5 A Final Image

Imagine the universe at the beginning: a perfect, featureless symmetry—a blank page of infinite potential but zero information. The first fold— inflation, symmetry breaking, the primordial perturbations—was a crack in that perfection.

A traditional view might lament the crack: perfection is shattered, the unity is lost. But the fold principle reveals the opposite:

The crack was not a flaw. It was the first word.

Every structure you see—every galaxy, every cell, every thought—is an elaboration of that first break. The universe has been folding ever since: taking ruptures and refusing to heal

them, holding them open, exploring what they might become, and in that patient exploration, writing itself into existence.

You are reading these words because neurons learned to fold, because synapses are gaps that refused to close, because your brain sustains a continuous cascade of held tensions that collapse moment by moment into the stream of consciousness.

You are understanding these words—really understanding, not just processing—because your semantic networks are folding right now: concepts that seemed contradictory are being held in productive coexistence, and in the space of that holding, a new synthesis is forming. That feeling of “getting it”—the small flash of insight—is the subjective correlate of a successful fold.

Emergence is not the negation of rupture. It is its cultivation.

Systems that learn to hold the crack open—to sustain the tension between what is and what could be, between order and chaos, between collapse and dissipation—discover possibilities that smooth continuity could never reach.

This is the lesson cosmology teaches neurobiology, neurobiology teaches artificial intelligence, and all of them together teach us:

Creativity is not the absence of discontinuity.

Creativity is discontinuity, held.

The universe does not become complex despite its breaks.

It becomes complex *through them*—by holding the tension of existence itself, the irreducible contradiction of being a cosmos both lawful and surprising, determined and open, ancient and eternally new.

And if we wish to participate in that creativity—as scientists unfolding nature’s patterns, as engineers folding new technologies into being, as conscious beings folding experience into meaning—we must learn what the universe has been teaching since the beginning:

Do not fear the crack.

Hold it.

See what it becomes.

“Das Schöne ist eine Manifestation geheimer Naturgesetze, die uns ohne dessen Erscheinung ewig wären verborgen geblieben.”
—Goethe

“The beautiful is a manifestation of secret laws of nature that would have remained hidden to us forever without its appearance.”

References

Anderson, P. W. (1972). More is different. *Science*, 177(4047), 393-396. <https://doi.org/10.1126/science.177.4047.393>

Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. *Journal of Cerebral Blood Flow & Metabolism*, 21(10), 1133-1145. <https://doi.org/10.1097/00004647-200110000-00001>

Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f noise. *Physical Review Letters*, 59(4), 381-384. <https://doi.org/10.1103/PhysRevLett.59.381>

Barnes, J., & White, S. D. M. (1984). A collision between two clusters of galaxies. *Monthly Notices of the Royal Astronomical Society*, 211(4), 753-768. <https://doi.org/10.1093/mnras/211.4.753>

Bear, M. F., & Abraham, W. C. (1996). Long-term depression in hippocampus. *Annual Review of Neuroscience*, 19(1), 437-462. <https://doi.org/10.1146/annurev.ne.19.030196.002253>

Bear, M. F., & Malenka, R. C. (1994). Synaptic plasticity: LTP and LTD. *Current Opinion in Neurobiology*, 4(3), 389-399. [https://doi.org/10.1016/0959-4388\(94\)90101-5](https://doi.org/10.1016/0959-4388(94)90101-5)

Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. *Journal of Neuroscience*, 23(35), 11167-11177. <https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003>

Bennett, C. L., et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations. *The Astrophysical Journal Supplement Series*, 148(1), 1-27. <https://doi.org/10.1086/377253>

Bennett, M. V. L., & Zukin, R. S. (2004). Electrical coupling and neuronal synchronization in the mammalian brain. *Neuron*, 41(4), 495-511. [https://doi.org/10.1016/S0896-6273\(04\)00043-1](https://doi.org/10.1016/S0896-6273(04)00043-1)

Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons. *Journal of Neuroscience*, 18(24), 10464-10472. <https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998>

Binney, J., & Tremaine, S. (2008). *Galactic dynamics* (2nd ed.). Princeton University Press.

Bliss, T. V. P., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. *Nature*, 361(6407), 31-39. <https://doi.org/10.1038/361031a0>

Bliss, T. V. P., & Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area. *The Journal of Physiology*, 232(2), 331-356. <https://doi.org/10.1113/jphysiol.1973.sp010273>

Bond, J. R., Kofman, L., & Pogosyan, D. (1996). How filaments of galaxies are woven into the cosmic web. *Nature*, 380(6575), 603-606. <https://doi.org/10.1038/380603a0>

Brown, E. N., Lydic, R., & Schiff, N. D. (2010). General anesthesia, sleep, and coma. *New England Journal of Medicine*, 363(27), 2638-2650. <https://doi.org/10.1056/NEJMra0808281>

Brown, T. B., et al. (2020). Language models are few-shot learners. *Advances in Neural Information Processing Systems*, 33, 1877-1901.

Buzsáki, G. (1989). Two-stage model of memory trace formation. *Neuroscience*, 31(3), 551-570. [https://doi.org/10.1016/0306-4522\(89\)90423-5](https://doi.org/10.1016/0306-4522(89)90423-5)

Chechik, G., Meilijson, I., & Ruppin, E. (1998). Synaptic pruning in development: A computational account. *Neural Computation*, 10(7), 1759-1777. <https://doi.org/10.1162/089976698300017124>

Churchland, M. M., et al. (2012). Neural population dynamics during reaching. *Nature*, 487(7405), 51-56. <https://doi.org/10.1038/nature11129>

Cossart, R., et al. (2005). Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. *Nature Neuroscience*, 8(1), 52-59. <https://doi.org/10.1038/nn1375>

Cover, T. M., & Thomas, J. A. (2006). *Elements of information theory* (2nd ed.). Wiley-Interscience.

Curto, C. (2016). What can topology tell us about the neural code? *Bulletin of the American Mathematical Society*, 54(1), 63-78. <https://doi.org/10.1090/bull/1554>

Darwin, C. (1859). *On the origin of species by means of natural selection*. John Murray.

Dehghani, N., et al. (2016). Dynamic balance of excitation and inhibition in human and monkey neocortex. *Scientific Reports*, 6(1), 23176. <https://doi.org/10.1038/srep23176>

Destexhe, A., & Contreras, D. (2006). Neuronal computations with stochastic network states. *Science*, 314(5796), 85-90. <https://doi.org/10.1126/science.1127241>

Dickinson, A., et al. (2016). Peak alpha frequency is a neural marker of cognitive function across the autism spectrum. *European Journal of Neuroscience*, 47(6), 643-651. <https://doi.org/10.1111/ejn.13645>

Edelsbrunner, H., & Harer, J. (2008). Persistent homology—a survey. *Contemporary Mathematics*, 453, 257-282. <https://doi.org/10.1090/conm/453/08802>

Frey, U., & Morris, R. G. M. (1997). Synaptic tagging and long-term potentiation. *Nature*, 385(6616), 533-536. <https://doi.org/10.1038/385533a0>

Friston, K. (2010). The free-energy principle: A unified brain theory? *Nature Reviews Neuroscience*, 11(2), 127-138. <https://doi.org/10.1038/nrn2787>

Friston, K., et al. (2017). Active inference: A process theory. *Neural Computation*, 29(1), 1-49. https://doi.org/10.1162/NECO_a_00912

Ghrist, R. (2008). Barcodes: The persistent topology of data. *Bulletin of the American Mathematical Society*, 45(1), 61-75. <https://doi.org/10.1090/S0273-0979-07-01191-3>

Goethe, J. W. von (1810). *Zur Farbenlehre* [Theory of colours]. Cotta.

Gross, D. J., & Wilczek, F. (1973). Ultraviolet behavior of non-abelian gauge theories. *Physical Review Letters*, 30(26), 1343-1346. <https://doi.org/10.1103/PhysRevLett.30.1343>

Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. *Physical Review D*, 23(2), 347-356. <https://doi.org/10.1103/PhysRevD.23.347>

Haider, B., et al. (2006). Neocortical network activity in vivo is generated through a dynamic balance. *Journal of Neuroscience*, 26(17), 4535-4545. <https://doi.org/10.1523/JNEUROSCI.5297-05.2006>

Haken, H. (1977). *Synergetics: An introduction*. Springer.

Hebb, D. O. (1949). *The organization of behavior: A neuropsychological theory*. Wiley.

Higgs, P. W. (1964). Broken symmetries and the masses of gauge bosons. *Physical Review Letters*, 13(16), 508-509. <https://doi.org/10.1103/PhysRevLett.13.508>

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. *Proceedings of the National Academy of Sciences*, 79(8), 2554-2558. <https://doi.org/10.1073/pnas.79.8.2554>

Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III. *Schizophrenia Bulletin*, 35(3), 549-562. <https://doi.org/10.1093/schbul/sbp006>

Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. *Journal of Comparative Neurology*, 387(2), 167-178.

Jiruska, P., et al. (2013). Synchronization and desynchronization in epilepsy. *The Journal of Physiology*, 591(4), 787-797. <https://doi.org/10.1113/jphysiol.2012.239590>

Kandel, E. R. (2001). The molecular biology of memory storage. *Science*, 294(5544), 1030-1038. <https://doi.org/10.1126/science.1067020>

Kaplan, J., et al. (2020). Scaling laws for neural language models. *arXiv preprint arXiv:2001.08361*.

Katz, L. C., & Shatz, C. J. (1996). Synaptic activity and the construction of cortical circuits. *Science*, 274(5290), 1133-1138. <https://doi.org/10.1126/science.274.5290.1133>

Kauffman, S. A. (1993). *The origins of order: Self-organization and selection in evolution*. Oxford University Press.

Kauffman, S. A. (2000). *Investigations*. Oxford University Press.

Kimura, M. (1983). *The neutral theory of molecular evolution*. Cambridge University Press.

Kolb, E. W., & Turner, M. S. (1990). *The early universe*. Addison-Wesley.

Landau, L. D., & Lifshitz, E. M. (1980). *Statistical physics* (3rd ed., Part 1). Pergamon Press.

Lande, R. (1979). Quantitative genetic analysis of multivariate evolution. *Evolution*, 33(1Part2), 402-416. <https://doi.org/10.1111/j.1558-5646.1979.tb04678.x>

Lee, A. K., & Wilson, M. A. (2002). Memory of sequential experience in the hippocampus. *Neuron*, 36(6), 1183-1194. [https://doi.org/10.1016/S0896-6273\(02\)01010-0](https://doi.org/10.1016/S0896-6273(02)01010-0)

Lever, C., et al. (2002). Long-term plasticity in hippocampal place-cell representation. *Nature*, 416(6876), 90-94. <https://doi.org/10.1038/416090a>

Lifshitz, E. M., & Pitaevskii, L. P. (1980). *Statistical physics* (Part 2). Pergamon Press.

Linde, A. D. (1982). A new inflationary universe scenario. *Physics Letters B*, 108(6), 389-393. [https://doi.org/10.1016/0370-2693\(82\)91219-9](https://doi.org/10.1016/0370-2693(82)91219-9)

Lynden-Bell, D. (1967). Statistical mechanics of violent relaxation in stellar systems. *Monthly Notices of the Royal Astronomical Society*, 136(1), 101-121. <https://doi.org/10.1093/mnras/136.1.101>

MacArthur, R. H., & Wilson, E. O. (1967). *The theory of island biogeography*. Princeton University Press.

Markram, H., et al. (2004). Interneurons of the neocortical inhibitory system. *Nature Reviews Neuroscience*, 5(10), 793-807. <https://doi.org/10.1038/nrn1519>

Maynard Smith, J., & Szathmáry, E. (1995). *The major transitions in evolution*. Oxford University Press.

Mukhanov, V. F. (2005). *Physical foundations of cosmology*. Cambridge University Press.

Mukhanov, V. F., & Chibisov, G. V. (1981). Quantum fluctuations and a nonsingular universe. *JETP Letters*, 33, 532-535.

Navarro, J. F., Frenk, C. S., & White, S. D. M. (1997). A universal density profile from hierarchical clustering. *The Astrophysical Journal*, 490(2), 493-508. <https://doi.org/10.1086/304888>

Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf's law. *Contemporary Physics*, 46(5), 323-351. <https://doi.org/10.1080/00107510500052444>

O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. *Brain Research*, 34(1), 171-175. [https://doi.org/10.1016/0006-8993\(71\)90358-1](https://doi.org/10.1016/0006-8993(71)90358-1)

Ouyang, L., et al. (2022). Training language models to follow instructions with human feedback. *Advances in Neural Information Processing Systems*, 35, 27730-27744.

Peccei, R. D., & Quinn, H. R. (1977). CP conservation in the presence of pseudoparticles. *Physical Review Letters*, 38(25), 1440-1443. <https://doi.org/10.1103/PhysRevLett.38.1440>

Peebles, P. J. E. (1968). Recombination of the primeval plasma. *The Astrophysical Journal*, 153, 1-11. <https://doi.org/10.1086/149628>

Peebles, P. J. E. (1980). *The large-scale structure of the universe*. Princeton University Press.

Planck Collaboration. (2020). Planck 2018 results. VI. Cosmological parameters. *Astronomy & Astrophysics*, 641, A6. <https://doi.org/10.1051/0004-6361/201833910>

Politzer, H. D. (1973). Reliable perturbative results for strong interactions? *Physical Review Letters*, 30(26), 1346-1349. <https://doi.org/10.1103/PhysRevLett.30.1346>

Polley, D. B., et al. (2004). Experience-dependent plasticity of binocular responses. *Journal of Neuroscience*, 24(13), 3388-3393. <https://doi.org/10.1523/JNEUROSCI.5295-03.2004>

Pranav, P., et al. (2019). Unexpected topology of the temperature fluctuations in the cosmic microwave background. *Astronomy & Astrophysics*, 627, A163. <https://doi.org/10.1051/0004-6361/201834916>

Prigogine, I. (1977). Time, structure, and fluctuations. *Science*, 201(4358), 777-785. <https://doi.org/10.1126/science.201.4358.777>

Prigogine, I., & Stengers, I. (1984). *Order out of chaos: Man's new dialogue with nature*. Bantam Books.

Radford, A., et al. (2019). Language models are unsupervised multitask learners. *OpenAI Blog*, 1(8), 9.

Roff, D. A. (2002). *Life history evolution*. Sinauer Associates.

Royer, S., & Paré, D. (2003). Conservation of total synaptic weight. *Nature*, 422(6931), 518-522. <https://doi.org/10.1038/nature01530>

Rubin, V. C., & Ford, W. K., Jr. (1970). Rotation of the Andromeda nebula. *The Astrophysical Journal*, 159, 379-403. <https://doi.org/10.1086/150317>

Rubenstein, J. L. R., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition. *Genes, Brain and Behavior*, 2(5), 255-267. <https://doi.org/10.1034/j.1601-183X.2003.00037.x>

Salam, A. (1968). Weak and electromagnetic interactions. In *Elementary particle physics: Relativistic groups and analyticity* (pp. 367-377). Almqvist & Wiksell.

Schaeffer, R., Miranda, B., & Koyejo, S. (2023). Are emergent abilities of large language models a mirage? *Advances in Neural Information Processing Systems*, 36.

Schluter, D. (2000). *The ecology of adaptive radiation*. Oxford University Press.

Selkoe, D. J. (2002). Alzheimer's disease is a synaptic failure. *Science*, 298(5594), 789-791. <https://doi.org/10.1126/science.1074069>

Shandarin, S. F., et al. (2012). The morphology of the cosmic web. In *Data analysis in cosmology* (pp. 401-430). Springer.

Shannon, C. E. (1948). A mathematical theory of communication. *Bell System Technical Journal*, 27(3), 379-423. <https://doi.org/10.1002/j.1538-7305.1948.tb01338.x>

Shew, W. L., & Plenz, D. (2013). The functional benefits of criticality in the cortex. *The Neuroscientist*, 19(1), 88-100. <https://doi.org/10.1177/1073858412445487>

Smoot, G. F., et al. (1992). Structure in the COBE differential microwave radiometer first-year maps. *The Astrophysical Journal*, 396, L1-L5. <https://doi.org/10.1086/186504>

Solé, R., & Goodwin, B. (2001). *Signs of life: How complexity pervades biology*. Basic Books.

Sousbie, T. (2011). The persistent cosmic web and its filamentary structure. *Monthly Notices of the Royal Astronomical Society*, 414(1), 350-383. <https://doi.org/10.1111/j.1365-2966.2011.18394.x>

Stanley, H. E. (1987). *Introduction to phase transitions and critical phenomena*. Oxford University Press.

Stearns, S. C. (1992). *The evolution of life histories*. Oxford University Press.

Tessier-Lavigne, M., & Goodman, C. S. (1996). The molecular biology of axon guidance. *Science*, 274(5290), 1123-1133. <https://doi.org/10.1126/science.274.5290.1123>

Thom, R. (1972). *Structural stability and morphogenesis* (D. H. Fowler, Trans.). W. A. Benjamin.

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude. *Nature*, 391(6670), 892-896. <https://doi.org/10.1038/36103>

Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. *Nature Reviews Neuroscience*, 5(2), 97-107. <https://doi.org/10.1038/nrn1327>

Vogels, T. P., & Abbott, L. F. (2009). Gating multiple signals through detailed balance. *Nature Neuroscience*, 12(4), 483-491. <https://doi.org/10.1038/nn.2276>

Vogels, T. P., et al. (2011). Inhibitory plasticity balances excitation and inhibition. *Science*, 334(6062), 1569-1573. <https://doi.org/10.1126/science.1211095>

Wagner, A. (2008). Robustness and evolvability: A paradox resolved. *Proceedings of the Royal Society B*, 275(1630), 91-100. <https://doi.org/10.1098/rspb.2007.1137>

Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. *Evolution*, 50(3), 967-976. <https://doi.org/10.1111/j.1558-5646.1996.tb02339.x>

Wechsler, R. H., et al. (2002). The dependence of halo clustering on halo formation history. *The Astrophysical Journal*, 568(1), 52-70. <https://doi.org/10.1086/338765>

Wehr, M., & Zador, A. M. (2003). Balanced inhibition underlies tuning. *Nature*, 426(6965), 442-446. <https://doi.org/10.1038/nature02116>

Wei, J., et al. (2022a). Emergent abilities of large language models. *Transactions on Machine Learning Research*.

Wei, J., et al. (2022b). Chain-of-thought prompting elicits reasoning. *Advances in Neural Information Processing Systems*, 35, 24824-24837.

Weinberg, S. (1967). A model of leptons. *Physical Review Letters*, 19(21), 1264-1266. <https://doi.org/10.1103/PhysRevLett.19.1264>

Weinberg, S. (1972). *Gravitation and cosmology*. Wiley.

White, S. D. M., & Rees, M. J. (1978). Core condensation in heavy halos. *Monthly Notices of the Royal Astronomical Society*, 183(3), 341-358. <https://doi.org/10.1093/mnras/183.3.341>

Whitehead, A. N. (1929). *Process and reality: An essay in cosmology*. Macmillan.

Wilent, W. B., & Contreras, D. (2005). Dynamics of excitation and inhibition. *Nature Neuroscience*, 8(10), 1364-1370. <https://doi.org/10.1038/nn1534>

Williams, P. L., & Beer, R. D. (2010). Nonnegative decomposition of multivariate information. *arXiv preprint arXiv:1004.2515*.

Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. *Science*, 261(5124), 1055-1058. <https://doi.org/10.1126/science.8351520>

Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. *Science*, 265(5172), 676-679. <https://doi.org/10.1126/science.8036517>

Wolfram, S. (2002). *A new kind of science*. Wolfram Media.

Zel'dovich, Y. B. (1970). Gravitational instability: An approximate theory. *Astronomy and Astrophysics*, 5, 84-89.

Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. *Annual Review of Physiology*, 64(1), 355-405. <https://doi.org/10.1146/annurev.physiol.64.092501.114547>

Zwicky, F. (1937). On the masses of nebulae and of clusters of nebulae. *The Astrophysical Journal*, 86, 217-246. <https://doi.org/10.1086/143864>

© 2025 Jonas Jakob Gebendorfer. All rights reserved.

No part of this publication may be reproduced, stored, or transmitted in any form without prior written permission, except for brief quotations in reviews or academic citation.

Trademarks are the property of their respective owners. This work is provided “as is”; no warranties; no legal, financial, or investment advice.

Contact: jonas@origamisystems.ai